Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Mater ; 23(5): 619-626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374414

RESUMEN

Antiferromagnets hosting real-space topological textures are promising platforms to model fundamental ultrafast phenomena and explore spintronics. However, they have only been epitaxially fabricated on specific symmetry-matched substrates, thereby preserving their intrinsic magneto-crystalline order. This curtails their integration with dissimilar supports, restricting the scope of fundamental and applied investigations. Here we circumvent this limitation by designing detachable crystalline antiferromagnetic nanomembranes of α-Fe2O3. First, we show-via transmission-based antiferromagnetic vector mapping-that flat nanomembranes host a spin-reorientation transition and rich topological phenomenology. Second, we exploit their extreme flexibility to demonstrate the reconfiguration of antiferromagnetic states across three-dimensional membrane folds resulting from flexure-induced strains. Finally, we combine these developments using a controlled manipulator to realize the strain-driven non-thermal generation of topological textures at room temperature. The integration of such free-standing antiferromagnetic layers with flat/curved nanostructures could enable spin texture designs via magnetoelastic/geometric effects in the quasi-static and dynamical regimes, opening new explorations into curvilinear antiferromagnetism and unconventional computing.

2.
Development ; 147(17)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32747435

RESUMEN

Homeostasis of intestinal stem cells (ISCs) is maintained by the orchestration of niche factors and intrinsic signaling networks. Here, we have found that deletion of Erk1 and Erk2 (Erk1/2) in intestinal epithelial cells at embryonic stages resulted in an unexpected increase in cell proliferation and migration, expansion of ISCs, and formation of polyp-like structures, leading to postnatal death. Deficiency of epithelial Erk1/2 results in defects in secretory cell differentiation as well as impaired mesenchymal cell proliferation and maturation. Deletion of Erk1/2 strongly activated Wnt signaling through both cell-autonomous and non-autonomous mechanisms. In epithelial cells, Erk1/2 depletion resulted in loss of feedback regulation, leading to Ras/Raf cascade activation that transactivated Akt activity to stimulate the mTor and Wnt/ß-catenin pathways. Moreover, Erk1/2 deficiency reduced the levels of Indian hedgehog and the expression of downstream pathway components, including mesenchymal Bmp4 - a Wnt suppressor in intestines. Inhibition of mTor signaling by rapamycin partially rescued Erk1/2 depletion-induced intestinal defects and significantly prolonged the lifespan of mutant mice. These data demonstrate that Erk/Mapk signaling functions as a key modulator of Wnt signaling through coordination of epithelial-mesenchymal interactions during intestinal development.


Asunto(s)
Intestinos/embriología , Sistema de Señalización de MAP Quinasas , Vía de Señalización Wnt , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo
3.
Nat Chem Biol ; 16(6): 635-643, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32251410

RESUMEN

Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to develop a selective, in vivo-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA-sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Movimiento Celular , Proteína Doblecortina , Quinasas Similares a Doblecortina , Ensayos de Selección de Medicamentos Antitumorales , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacocinética , Proteómica , Ratas , Relación Estructura-Actividad , Pez Cebra , Neoplasias Pancreáticas
4.
Nano Lett ; 21(10): 4314-4319, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33848172

RESUMEN

Proton exchange membranes (PEMs) with both high selectivity and high permeance are of great demand in hydrogen-based applications, especially in fuel cells. Although graphene membranes have shown high selectivity of protons over other ions and molecules, the relatively low permeance of protons through perfect pristine graphene restricts its practical applications. Inspired by the nitrogen-assisted proton transport in biological systems, we introduced N-doping to increase the proton permeance and proposed a type of N-doped graphene membranes (NGMs) for proton exchange, which have both high proton permeance and high selectivity. Compared to the state-of-the-art commercial PEMs, the NGMs show significant increases in both areal proton conductivity (2-3 orders of magnitude) and selectivity of proton to methanol (1-2 orders of magnitude). The work realized the controllable tuning of proton permeance of the graphene membrane with N-doping and developed a new type of graphene-based PEMs with high performance for practical applications.


Asunto(s)
Grafito , Protones , Biomimética , Conductividad Eléctrica , Membranas Artificiales
5.
Yi Chuan ; 43(7): 694-703, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34284984

RESUMEN

As a potent insulinotrophic hormone, glucagon-like peptide 1 (GLP-1) is mainly secreted by intestinal L cells, which can effectively promote the release of insulin and thus reduce blood glucose. Therefore, GLP-1 and its analogs have a good prospect in the treatment of type 2 diabetes. In this study, we constructed mouse intestinal organoids that overexpress GLP-1 by optimizing the GLP-1 lentivirus infection method. We found that supernatants secreted by the GLP-1 overexpression organoids effectively enhanced glucose tolerance in wild-type and diabetic mouse. Thus, the GLP-1 overexpression organoids built in this study may provide a novel strategy for the treatment of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Animales , Glucemia , Diabetes Mellitus Tipo 2/genética , Glucagón , Insulina , Ratones , Organoides
6.
Int J Cancer ; 147(8): 2239-2252, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32372448

RESUMEN

Intestinal tumors mainly originate from transformed crypt stem cells supported by Wnt signaling, which functions through downstream critical factors enriched in the intestinal stem/progenitor compartment. Here, we show Uhrf2 is predominantly expressed in intestinal crypts and adenomas in mice and is transcriptionally regulated by Wnt signaling. Upregulated UHRF2 correlates with poor prognosis in colorectal cancer patients. Although loss of Uhrf2 did not affect intestinal homeostasis and regeneration, tumor initiation and progression were inhibited, leading to a markedly prolonged life span in Uhrf2 null mice on an ApcMin background. Uhrf2 deficiency also strongly reduced primary tumor organoid formation suggesting impairment of tumor stem cells. Moreover, ablation of Uhrf2 suppressed tumor cell proliferation through downregulation of the Wnt/ß-catenin pathway. Mechanistically, Uhrf2 directly interacts with and sumoylates Tcf4, a critical intranuclear effector of the Wnt pathway. Uhrf2 mediated SUMOylation stabilized Tcf4 and further sustained hyperactive Wnt signaling. Together, we demonstrate that Wnt-induced Uhrf2 expression promotes tumorigenesis through modulation of the stability of Tcf4 for maintaining oncogenic Wnt/ß-catenin signaling. This is a new reciprocal feedforward regulation between Uhrf2 and Wnt signaling in tumor initiation and progression.


Asunto(s)
Carcinogénesis/genética , Neoplasias Colorrectales/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Ubiquitina-Proteína Ligasas/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , Adenoma/genética , Adenoma/patología , Animales , Carcinogénesis/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Neoplásicas/patología , Oncogenes/genética , Transcripción Genética/genética , Regulación hacia Arriba/genética
7.
Biochem Biophys Res Commun ; 519(4): 754-760, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31547988

RESUMEN

Wnt signaling is essential for the maintenance of adult stem cells and its aberrant activation is a stimulator of carcinogenesis. The transmembrane protein, Wntless, is an essential Wnt signaling component through regulating the secretion of Wnt ligands. Here, we generated a mouse model with specific Wntless knockout in intestinal epithelium to study its function in the intestinal epithelium. Wntless knockout exhibits no obvious defects in mice but significantly disrupted proliferation and differentiation of small intestinal organoids. We also discovered that these deficiencies could be partially rescued by Wnt3a supplement but not Wnt9b. To further investigate the role of Wntless in tumorigenesis, APC-deficient spontaneous intestinal tumors and chemical induced colorectal cancer mouse models were employed. To our surprise, intestinal epithelium-specific knockout of Wntless did not cause significant differences in tumor number and size. In summary, our data demonstrated that epithelial Wntless was required for the growth and differentiation of small intestinal organoids but not in live animals, suggesting the other tissues, such as mesenchymal tissue, play critical role for Wnt secretion in both intestinal homeostasis as well as tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Neoplasias Intestinales/genética , Receptores Acoplados a Proteínas G/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Intestinales/metabolismo , Ratones Noqueados , Ratones Transgénicos , Organoides/metabolismo , Organoides/patología , Receptores Acoplados a Proteínas G/metabolismo
8.
J Am Chem Soc ; 134(5): 2681-90, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22229911

RESUMEN

The interaction between synthetic polymer nanoparticles (NPs) and biomacromolecules (e.g., proteins, lipids, and polysaccharides) can profoundly influence the NPs fate and function. Polysaccharides (e.g., heparin/heparin sulfate) are a key component of cell surfaces and the extracelluar matrix and play critical roles in many biological processes. We report a systematic investigation of the interaction between synthetic polymer nanoparticles and polysaccharides by ITC, SPR, and an anticoagulant assay to provide guidelines to engineer nanoparticles for biomedical applications. The interaction between acrylamide nanoparticles (~30 nm) and heparin is mainly enthalpy driven with submicromolar affinity. Hydrogen bonding, ionic interactions, and dehydration of polar groups are identified to be key contributions to the affinity. It has been found that high charge density and cross-linking of the NP can contribute to high affinity. The affinity and binding capacity of heparin can be significantly diminished by an increase in salt concentration while only slightly decreased with an increase of temperature. A striking difference in binding thermodynamics has been observed when the main component of a polymer nanoparticle is changed from acrylamide (enthalpy driven) to N-isopropylacryalmide (entropy driven). This change in thermodynamics leads to different responses of these two types of polymer NPs to salt concentration and temperature. Select synthetic polymer nanoparticles have also been shown to inhibit protein-heparin interactions and thus offer the potential for therapeutic applications.


Asunto(s)
Nanopartículas/química , Polímeros/síntesis química , Polisacáridos/química , Estructura Molecular , Polímeros/química , Bibliotecas de Moléculas Pequeñas
9.
J Am Chem Soc ; 134(38): 15765-72, 2012 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-22924890

RESUMEN

A process for the preparation of an abiotic protein affinity ligand is described. The affinity ligand, a synthetic polymer hydrogel nanoparticle (NP), is formulated with functional groups complementary to the surface presentation of the target protein. An iterative process is used to improve affinity by optimizing the composition and proportion of functional monomers. Since the polymer NPs are formed by a kinetically driven process, the sequence of functional monomers in the polymer chain is not controlled; only the average composition can be adjusted by the stoichiometry of the monomers in the feed. To compensate for this the hydrogel NP is lightly cross-linked resulting in chain flexibility that takes place on a submillisecond time scale allowing the polymer to "map" onto a protein surface with complementary functionality. In this study, we report a lightly cross-linked (2%) N-isopropyl acrylamide (NIPAm) synthetic polymer NP (50-65 nm) incorporating hydrophobic and carboxylate groups that binds with high affinity to the Fc fragment of IgG. The affinity and amount of NP bound to IgG is pH dependent. The hydrogel NP inhibits protein A binding to the Fc domain at pH 5.5, but not at pH 7.3. A computational analysis was used to identify potential NP-protein interaction sites. Candidates include a NP binding domain that overlaps with the protein A-Fc binding domain at pH 5.5. The computational analysis supports the inhibition experimental results and is attributed to the difference in the charged state of histidine residues. Affinity of the NP (3.5-8.5 nM) to the Fc domain at pH 5.5 is comparable to protein A at pH 7. These results establish that engineered synthetic polymer NPs can be formulated with an intrinsic affinity to a specific domain of a large biomacromolecule.


Asunto(s)
Inmunoglobulina G/química , Nanopartículas , Polímeros/química , Ligandos , Modelos Moleculares
10.
ACS Appl Mater Interfaces ; 14(11): 13611-13621, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35259870

RESUMEN

Precise regulation of ion transport through nanoscale pores will profoundly impact diverse fields from separation to energy conversion but is still challenging to achieve in artificial ion channels. Herein, inspired by the exquisite ion selectivity of biological Na+ channels, we have successfully fabricated hierarchically grown metal-organic frameworks (MOFs) on an asymmetrical substrate assisted by atomically thin nanoporous graphene. Efficient separation of monovalent metal ions is realized by encapsulating 18-crown-6 into MOF crystals. The resulting 18-crown-6@ZIF-67/ZIF-8 device, with subnanochannels and specific K+ binding sites, shows an ultrahigh Li+ conductivity of 1.46 × 10-2 S cm-1 and selectivities of 9.56 and 6.43 for Li+/K+ and Na+/K+, respectively. The Li+ conductivity is around 1-2 orders of magnitude higher than reported values for the other MOF materials. It is the first time that MOFs with subnanochannels realize selective transport of Na+ (ionic diameter of 1.9 Å) over K+ (2.6 Å) based on subangstrom differences in their ionic diameter. Our work opens new avenues to develop crown ether@MOF platforms toward efficient ion transistors, fluidic logic devices, and biosensors.

11.
ACS Appl Bio Mater ; 4(3): 2704-2712, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35014309

RESUMEN

Peptide-polymer complementary pairs can provide useful tools for isolating, organizing, and separating biomacromolecules. We describe a procedure for selecting a high affinity complementary peptide-polymer nanoparticle (NP) pair using phage display. A hydrogel copolymer nanoparticle containing a statistical distribution of negatively charged and hydrophobic groups was used to select a peptide sequence from a phage displayed library of >1010 peptides. The NP has low nanomolar affinity for the selected cyclic peptide and exhibited low affinity for a panel of diverse proteins and peptide variants. Affinity arises from the complementary physiochemical properties of both NP and peptide as well as the specific peptide sequence. Comparison of linear and cyclic variants of the peptide established that peptide structure also contributes to affinity. These findings offer a general method for identifying polymer-peptide complementary pairs. Significantly, precise polymer sequences (proteins) are not a requirement, a low information statistical copolymer can be used to select for a specific peptide sequence with affinity and selectivity comparable to that of an antibody. The data also provides evidence for the physiochemical and structural contributions to binding. The results confirm the utility of abiotic, statistical, synthetic copolymers as selective, high affinity peptide affinity reagents.


Asunto(s)
Materiales Biocompatibles/química , Nanopartículas/química , Péptidos/química , Polímeros/química , Ensayo de Materiales , Tamaño de la Partícula
12.
Artículo en Inglés | MEDLINE | ID: mdl-34133124

RESUMEN

Membranes are key components in chemical purification, biological separation, and water desalination. Traditional polymeric membranes are subjected to a ubiquitous trade-off between permeance and selectivity, which significantly hinders the separation performance. Nanoporous atomically thin membranes (NATMs), such as graphene NATMs, have the potential to break this trade-off. Owing to their uniqueness of two-dimensional structure and potential nanopore structure controllability, NATMs are expected to have outstanding selectivity through molecular sieving while achieving ultimate permeance at the same time. However, a drastic selectivity discrepancy exists between the proof-of-concept demonstrations and scalable separation applications in graphene membranes. In this paper, we offer a possible solution to narrow this discrepancy by tuning the pore density and pore size separately with two successive plasma treatments. We demonstrate that by narrowing the pore size distribution, the selectivity of graphene membranes can be greatly increased. Low-energy argon plasma is first applied to nucleate high density of defects in graphene. Controlled oxygen plasma is then utilized to selectively enlarge the defects into nanopores with desired sizes. This method is scalable, and the fabricated 1 cm2 graphene NATMs with sub-nanometer pores can separate KCl and Allura Red with a selectivity of 104 and a permeance of 1.1 × 10-6 m s-1. The pores in NATMs can be further tuned from gas-selective sub-nanometer pores to a few nanometer size. The fabricated NATMs show a selectivity of 35 between CO2 and N2. With longer enlargement time, a selectivity of 21.2 between a lysozyme and bovine serum albumin can also be achieved with roughly four times higher permeance than that of a commercial dialysis membrane. This research offers a solution to realize NATMs of tunable pore size with a narrow pore size distribution for different separation processes from sub-nanometer in gas separation or desalination to a few nanometers in dialysis.

13.
Nat Genet ; 53(4): 500-510, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33782605

RESUMEN

Spleen tyrosine kinase (SYK) is a critical immune signaling molecule and therapeutic target. We identified damaging monoallelic SYK variants in six patients with immune deficiency, multi-organ inflammatory disease such as colitis, arthritis and dermatitis, and diffuse large B cell lymphomas. The SYK variants increased phosphorylation and enhanced downstream signaling, indicating gain of function. A knock-in (SYK-Ser544Tyr) mouse model of a patient variant (p.Ser550Tyr) recapitulated aspects of the human disease that could be partially treated with a SYK inhibitor or transplantation of bone marrow from wild-type mice. Our studies demonstrate that SYK gain-of-function variants result in a potentially treatable form of inflammatory disease.


Asunto(s)
Artritis/genética , Colitis/genética , Dermatitis/genética , Linfoma de Células B Grandes Difuso/genética , Quinasa Syk/genética , Adulto , Animales , Artritis/inmunología , Artritis/patología , Artritis/terapia , Secuencia de Bases , Trasplante de Médula Ósea , Colitis/inmunología , Colitis/patología , Colitis/terapia , Dermatitis/inmunología , Dermatitis/patología , Dermatitis/terapia , Familia , Femenino , Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Lactante , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/terapia , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Mutación , Linaje , Inhibidores de Proteínas Quinasas/farmacología , Quinasa Syk/antagonistas & inhibidores , Quinasa Syk/deficiencia
14.
J Am Chem Soc ; 132(39): 13648-50, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20828125

RESUMEN

We report that multifunctional polymer nanoparticles approximately the size of a large protein can be "purified", on the basis of peptide affinity just as antibodies, using an affinity chromatography strategy. The selection process takes advantage of the thermoresponsiveness of the nanoparticles allowing "catch and release" of the target peptide by adjusting the temperature. Purified particles show much stronger affinity (K(dapp) ≈ nM) and a narrower affinity distribution than the average of particles before purification (K(dapp) > µM) at room temperature but can release the peptide just by changing the temperature. We anticipate this affinity selection will be general and become an integral step for the preparation of "plastic antibodies" with near-homogeneous and tailored affinity for target biomacromolecules.


Asunto(s)
Meliteno/aislamiento & purificación , Nanopartículas/química
15.
Peptides ; 28(11): 2229-34, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17919778

RESUMEN

Copper (II) has been implicated in the pathology of Alzheimer's disease (AD) for the impaired homeostatic mechanism found in the brains of AD patients. Here we studied the binding properties of Cu(II) with the first microtubule-binding repeat, encompassing residues 256-273 of the human tau441 sequence. Additionally, the effect of Cu(II) on the assembly of this repeat was also investigated. Our results indicate that Cu(II) can bind to this repeat with His(268) involved and has an inhibiting effect on the in vitro aggregation of this repeat. This work provides new insight into the role of Cu(II) in Alzheimer's disease.


Asunto(s)
Cobre/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Dicroismo Circular , Cobre/farmacología , Histidina/química , Histidina/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Unión Proteica , Conformación Proteica/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Proteínas tau/química
16.
Basic Clin Pharmacol Toxicol ; 120(3): 250-255, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27657920

RESUMEN

P-glycoprotein (P-gp), an important efflux transporter in intestine, regulates the bioavailability of orally taken drugs. To develop an in vitro model that preferably mimics the physiological microenvironment of human intestine, we employed the three-dimensionally (3D) cultured organoids from human normal small intestinal epithelium. It was observed that the intestinal crypts could efficiently form cystic organoid structure with the extension of culture time. Furthermore, the physiological expression of ABCB1 was detected at both mRNA and protein levels in cultured organoids. Rhodamine 123 (Rh123), a typical substrate of P-gp, was actively transported across 3D organoids and accumulated in the luminal space. This transport process was also inhibited by verapamil and mitotane. In summary, the above-mentioned model based on human small intestinal 3D organoids is suitable to imitate the small intestinal epithelium and could be used as a novel in vitro model especially for P-gp inhibitor screening.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Organoides/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Disponibilidad Biológica , Transporte Biológico/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Inmunohistoquímica , Mitotano/farmacología , Modelos Biológicos , ARN Mensajero/metabolismo , Rodamina 123/farmacocinética , Técnicas de Cultivo de Tejidos , Verapamilo/farmacología
18.
Basic Clin Pharmacol Toxicol ; 119(4): 349-52, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27060462

RESUMEN

P-glycoprotein (P-gp), as the most important efflux transporter in intestines, plays the key role to determine the bioavailability of many drugs. The three-dimensional (3D) organoid model is suitable to imitate small intestinal epithelium. In this study, a rapid, sensitive and efficient method to measure rhodamine 123 (Rh123, P-gp substrate) in 3D organoids was developed to analyse P-gp-mediated drug transport. Ultrasonic cell disruptor was used to smash the organoid, and automatic microplate reader was used for detecting the concentration of Rh123 (λex /λem = 485/520 nm). Moreover, verapamil, quinidine and mitotane were used to make validation about this newly developed approach. All three P-gp inhibitors significantly inhibited the transport of Rh123 into 3D organoids. Therefore, the above-mentioned method could serve as a new model for P-gp inhibitor screening in a high-throughput way.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Enterocitos/metabolismo , Colorantes Fluorescentes/metabolismo , Moduladores del Transporte de Membrana/farmacología , Modelos Biológicos , Organoides/metabolismo , Rodamina 123/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Automatización de Laboratorios , Transporte Biológico/efectos de los fármacos , Enterocitos/citología , Enterocitos/efectos de la radiación , Ensayos Analíticos de Alto Rendimiento , Inmunohistoquímica , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Intestino Delgado/citología , Intestino Delgado/metabolismo , Cinética , Ratones Endogámicos C57BL , Organoides/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Fluorescencia , Técnicas de Cultivo de Tejidos , Ondas Ultrasónicas
19.
ACS Nano ; 4(1): 199-204, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20014822

RESUMEN

Synthetic polymer nanoparticles with antibody-like affinity for a hydrophilic peptide have been prepared by inverse microemulsion polymerization. Peptide affinity was achieved in part by incorporating the target (imprint) peptide in the polymerization reaction mixture. Incorporation of the imprint peptide assists in the creation of complementary binding sites in the resulting polymer nanoparticle (NP). To orient the imprint peptide at the interface of the water and oil domains during polymerization, the peptide target was coupled with fatty acid chains of varying length. The peptide--NP binding affinities (ca. 90-900 nM) were quantitatively evaluated by a quartz crystal microbalance (QCM). The optimal chain length was established that created high affinity peptide binding sites on the surface of the nanoparticles. This method can be used for the preparation of nanosized synthetic polymers with antibody-like affinity for hydrophilic peptides and proteins ("plastic antibodies").


Asunto(s)
Afinidad de Anticuerpos , Biomimética , Nanopartículas/química , Péptidos/química , Péptidos/metabolismo , Polímeros/química , Polímeros/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Impresión Molecular , Polímeros/síntesis química , Propiedades de Superficie
20.
Biochem Biophys Res Commun ; 348(2): 637-42, 2006 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16889747

RESUMEN

Aggregation of abnormally phosphorylated tau in the form of tangs of paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease (AD) and other tauopathies. It is of fundamental importance to study the mechanism of PHF formation and its modulation by phosphorylation. In this work, we have focused on the first microtubule-binding repeat of tau encompassing an abnormal phosphorylation site Ser262. The assembly propensities of this repeat and its corresponding phosphorylated form were investigated by turbidity and electron microscopy. Additionally, conformation of the two peptides is also analyzed through circular dichroism (CD) and NMR spectroscopy. Our results reveal that both of them are capable of self-assembly and phosphorylation at Ser262 could speed up the process of assembly. A possible mechanism of PHF formation is proposed and enhancing effect of phosphorylation on assembly provides an explanation to its toxicity in Alzheimer's disease.


Asunto(s)
Tubulina (Proteína)/metabolismo , Proteínas tau/química , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Microscopía Electrónica , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/ultraestructura , Fosfopéptidos/química , Fosforilación , Estructura Cuaternaria de Proteína , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA