Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
MethodsX ; 13: 102857, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39105094

RESUMEN

We increase the dynamical range of a scanning tunneling microscope (STM) by actively subtracting dominant current-harmonics generated by nonlinearities in the current-voltage characteristics that could saturate the current preamplifier at low junction impedances or high gains. The strict phase relationship between a cosinusoidal excitation voltage and the current-harmonics allows excellent cancellation using the displacement-current of a driven compensating capacitor placed at the input of the preamplifier. Removal of DC currents has no effect on, and removal of the first harmonic only leads to a rigid shift in differential conductance that can be numerically reversed by adding the known removal current. Our method requires no permanent change of the hardware but only two phase synchronized voltage sources and a multi-frequency lock-in amplifier to enable high dynamic range spectroscopy and imaging. • Active power filter • Dynamic range compression • High gain preamplifier.

2.
MethodsX ; 11: 102483, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38034321

RESUMEN

Superconducting (SC) tips for scanning tunneling microscopy (STM) can enhance a wide range of surface science studies because they offer exquisite energy resolution, allow the study of Josephson tunneling, or provide spatial contrast based on the local interaction of the SC tip with the sample. The appeal of a SC tip is also practical. An SC gap can be used to characterize and optimize the noise of a low-temperature apparatus. Unlike typical samples, SC tips can be made with less ordered materials, such as from SC polycrystalline wires or by coating a normal metal tip with a superconductor. Those recipes either require additional laboratory infrastructure or are carried out in ambient conditions, leaving an oxidized tip behind. Here, we revisit the vacuum cleaving of an Nb wire to prepare fully gapped tips in an accessible one-step procedure. To show their utility, we measure the SC gap of Nb on Au(111) to determine the base temperature of our microscope and to optimize its RF filtering. The deliberate coating of the Nb tip with Au fully suppresses the SC gap and we show how sputtering with Ar+ ions can be used to gradually recover the gap, promising tunability for tailored SC gaps sizes. • Oxide free superconducting STM tips • RF filter optimization.

3.
Nanoscale Adv ; 5(6): 1722-1728, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36926566

RESUMEN

The on-surface synthesis of nano-graphenes has led the charge in prototyping structures with perspectives beyond silicon-based technology. Following reports of open-shell systems in graphene-nanoribbons (GNRs), a flurry of research activity was directed at investigating their magnetic properties with a keen eye for spintronic applications. Although the synthesis of nano-graphenes is usually carried out on Au(111), the substrate is difficult to use for electronic decoupling and spin-polarized measurements. Using a binary alloy Cu3Au(111), we show possibilities for gold-like on-surface synthesis compatible with spin polarization and electronic decoupling known from copper. We prepare copper oxide layers, demonstrate the synthesis of GNRs, and grow thermally stable magnetic Co islands. We functionalize the tip of a scanning tunneling microscope with carbon-monoxide, nickelocene, or attach Co clusters for high-resolution imaging, magnetic sensing, or spin-polarized measurements. This versatile platform will be a valuable tool in the advanced study of magnetic nano-graphenes.

4.
MethodsX ; 9: 101784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898613

RESUMEN

Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes. • Accumulative sampling for unknown degree of sparsity • Controllably interrupt and resume QPI measurements • Scattering wave conserving background subtractions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA