Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 192(2): 1338-1358, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36896653

RESUMEN

Two major groups of specialized metabolites in maize (Zea mays), termed kauralexins and dolabralexins, serve as known or predicted diterpenoid defenses against pathogens, herbivores, and other environmental stressors. To consider the physiological roles of the recently discovered dolabralexin pathway, we examined dolabralexin structural diversity, tissue-specificity, and stress-elicited production in a defined biosynthetic pathway mutant. Metabolomics analyses support a larger number of dolabralexin pathway products than previously known. We identified dolabradienol as a previously undetected pathway metabolite and characterized its enzymatic production. Transcript and metabolite profiling showed that dolabralexin biosynthesis and accumulation predominantly occur in primary roots and show quantitative variation across genetically diverse inbred lines. Generation and analysis of CRISPR-Cas9-derived loss-of-function Kaurene Synthase-Like 4 (Zmksl4) mutants demonstrated dolabralexin production deficiency, thus supporting ZmKSL4 as the diterpene synthase responsible for the conversion of geranylgeranyl pyrophosphate precursors into dolabradiene and downstream pathway products. Zmksl4 mutants further display altered root-to-shoot ratios and root architecture in response to water deficit. Collectively, these results demonstrate dolabralexin biosynthesis via ZmKSL4 as a committed pathway node biochemically separating kauralexin and dolabralexin metabolism, and suggest an interactive role of maize dolabralexins in plant vigor during abiotic stress.


Asunto(s)
Diterpenos , Zea mays , Zea mays/metabolismo , Diterpenos/metabolismo , Vías Biosintéticas , Metabolismo de los Lípidos
2.
Proc Natl Acad Sci U S A ; 117(1): 355-361, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31879352

RESUMEN

The methylerythritol phosphate (MEP) pathway is responsible for producing isoprenoids, metabolites with essential functions in the bacterial kingdom and plastid-bearing organisms including plants and Apicomplexa. Additionally, the MEP-pathway intermediate methylerythritol cyclodiphosphate (MEcPP) serves as a plastid-to-nucleus retrograde signal. A suppressor screen of the high MEcPP accumulating mutant plant (ceh1) led to the isolation of 3 revertants (designated Rceh1-3) resulting from independent intragenic substitutions of conserved amino acids in the penultimate MEP-pathway enzyme, hydroxymethylbutenyl diphosphate synthase (HDS). The revertants accumulate varying MEcPP levels, lower than that of ceh1, and exhibit partial or full recovery of MEcPP-mediated phenotypes, including stunted growth and induced expression of stress response genes and the corresponding metabolites. Structural modeling of HDS and ligand docking spatially position the substituted residues at the MEcPP binding pocket and cofactor binding domain of the enzyme. Complementation assays confirm the role of these residues in suppressing the ceh1 mutant phenotypes, albeit to different degrees. In vitro enzyme assays of wild type and HDS variants exhibit differential activities and reveal an unanticipated mismatch between enzyme kinetics and the in vivo MEcPP levels in the corresponding Rceh lines. Additional analyses attribute the mismatch, in part, to the abundance of the first and rate-limiting MEP-pathway enzyme, DXS, and further suggest MEcPP as a rheostat for abundance of the upstream enzyme instrumental in fine-tuning of the pathway flux. Collectively, this study identifies critical residues of a key MEP-pathway enzyme, HDS, valuable for synthetic engineering of isoprenoids, and as potential targets for rational design of antiinfective drugs.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Enzimas/genética , Oxidorreductasas/genética , Terpenos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas , Núcleo Celular/metabolismo , Enzimas/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Oxidorreductasas/metabolismo , Plantas Modificadas Genéticamente , Plastidios/genética , Plastidios/metabolismo
3.
Plant J ; 108(4): 1053-1068, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34514645

RESUMEN

Specialized diterpenoid metabolites are important mediators of plant-environment interactions in monocot crops. To understand metabolite functions in plant environmental adaptation that ultimately can enable crop improvement strategies, a deeper knowledge of the underlying species-specific biosynthetic pathways is required. Here, we report the genomics-enabled discovery of five cytochrome P450 monooxygenases (CYP71Z25-CYP71Z29) that form previously unknown furanoditerpenoids in the monocot bioenergy crop Panicum virgatum (switchgrass). Combinatorial pathway reconstruction showed that CYP71Z25-CYP71Z29 catalyze furan ring addition directly to primary diterpene alcohol intermediates derived from distinct class II diterpene synthase products. Transcriptional co-expression patterns and the presence of select diterpenoids in switchgrass roots support the occurrence of P450-derived furanoditerpenoids in planta. Integrating molecular dynamics, structural analysis and targeted mutagenesis identified active site determinants that contribute to the distinct catalytic specificities underlying the broad substrate promiscuity of CYP71Z25-CYP71Z29 for native and non-native diterpenoids.


Asunto(s)
Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/metabolismo , Genoma de Planta/genética , Panicum/enzimología , Biocatálisis , Productos Biológicos/química , Productos Biológicos/metabolismo , Dominio Catalítico , Sistema Enzimático del Citocromo P-450/genética , Diterpenos/química , Panicum/química , Panicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/enzimología , Raíces de Plantas/genética
4.
New Phytol ; 236(4): 1393-1408, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36028985

RESUMEN

Switchgrass (Panicum virgatum) is a bioenergy model crop valued for its energy efficiency and drought tolerance. The related monocot species rice (Oryza sativa) and maize (Zea mays) deploy species-specific, specialized metabolites as core stress defenses. By contrast, specialized chemical defenses in switchgrass are largely unknown. To investigate specialized metabolic drought responses in switchgrass, we integrated tissue-specific transcriptome and metabolite analyses of the genotypes Alamo and Cave-in-Rock that feature different drought tolerance. The more drought-susceptible Cave-in-Rock featured an earlier onset of transcriptomic changes and significantly more differentially expressed genes in response to drought compared to Alamo. Specialized pathways showed moderate differential expression compared to pronounced transcriptomic alterations in carbohydrate and amino acid metabolism. However, diterpenoid-biosynthetic genes showed drought-inducible expression in Alamo roots, contrasting largely unaltered triterpenoid and phenylpropanoid pathways. Metabolomic analyses identified common and genotype-specific flavonoids and terpenoids. Consistent with transcriptomic alterations, several root diterpenoids showed significant drought-induced accumulation, whereas triterpenoid abundance remained predominantly unchanged. Structural analysis verified select drought-responsive diterpenoids as oxygenated furanoditerpenoids. Drought-dependent transcriptome and metabolite profiles provide the foundation to understand the molecular mechanisms underlying switchgrass drought responses. Accumulation of specialized root diterpenoids and corresponding pathway transcripts supports a role in drought stress tolerance.


Asunto(s)
Diterpenos , Oryza , Panicum , Triterpenos , Panicum/metabolismo , Sequías , Transcriptoma/genética , Oryza/genética , Zea mays/genética , Diterpenos/metabolismo , Carbohidratos , Terpenos/metabolismo , Triterpenos/metabolismo , Flavonoides/metabolismo , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
New Phytol ; 236(3): 1089-1107, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35916073

RESUMEN

Flavor is essential to consumer preference of foods and is an increasing focus of plant breeding programs. In fruit crops, identifying genes underlying volatile organic compounds has great promise to accelerate flavor improvement, but polyploidy and heterozygosity in many species have slowed progress. Here we use octoploid cultivated strawberry to demonstrate how genomic heterozygosity, transcriptomic intricacy and fruit metabolomic diversity can be treated as strengths and leveraged to uncover fruit flavor genes and their regulatory elements. Multi-omics datasets were generated including an expression quantitative trait loci map with 196 diverse breeding lines, haplotype-phased genomes of a highly-flavored breeding selection, a genome-wide structural variant map using five haplotypes, and volatile genome-wide association study (GWAS) with > 300 individuals. Overlaying regulatory elements, structural variants and GWAS-linked allele-specific expression of numerous genes to variation in volatile compounds important to flavor. In one example, the functional role of anthranilate synthase alpha subunit 1 in methyl anthranilate biosynthesis was supported via fruit transient gene expression assays. These results demonstrate a framework for flavor gene discovery in fruit crops and a pathway to molecular breeding of cultivars with complex and desirable flavor.


Asunto(s)
Fragaria , Compuestos Orgánicos Volátiles , Antranilato Sintasa/metabolismo , Fragaria/genética , Frutas/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Compuestos Orgánicos Volátiles/metabolismo
6.
Plant J ; 103(2): 781-800, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32282967

RESUMEN

Terpenoid metabolism plays vital roles in stress defense and the environmental adaptation of monocot crops. Here, we describe the identification of the terpene synthase (TPS) gene family of the panicoid food and bioenergy model crop foxtail millet (Setaria italica). The diploid S. italica genome contains 32 TPS genes, 17 of which were biochemically characterized in this study. Unlike other thus far investigated grasses, S. italica contains TPSs producing all three ent-, (+)- and syn-copalyl pyrophosphate stereoisomers that naturally occur as central building blocks in the biosynthesis of distinct monocot diterpenoids. Conversion of these intermediates by the promiscuous TPS SiTPS8 yielded different diterpenoid scaffolds. Additionally, a cytochrome P450 monooxygenase (CYP99A17), which genomically clustered with SiTPS8, catalyzes the C19 hydroxylation of SiTPS8 products to generate the corresponding diterpene alcohols. The presence of syntenic orthologs to about 19% of the S. italica TPSs in related grasses supports a common ancestry of selected pathway branches. Among the identified enzyme products, abietadien-19-ol, syn-pimara-7,15-dien-19-ol and germacrene-d-4-ol were detectable in planta, and gene expression analysis of the biosynthetic TPSs showed distinct and, albeit moderately, inducible expression patterns in response to biotic and abiotic stress. In vitro growth-inhibiting activity of abietadien-19-ol and syn-pimara-7,15-dien-19-ol against Fusarium verticillioides and Fusarium subglutinans may indicate pathogen defensive functions, whereas the low antifungal efficacy of tested sesquiterpenoids supports other bioactivities. Together, these findings expand the known chemical space of monocot terpenoid metabolism to enable further investigations of terpenoid-mediated stress resilience in these agriculturally important species.


Asunto(s)
Transferasas Alquil y Aril/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Setaria (Planta)/genética , Genoma de Planta/genética , Familia de Multigenes/genética , Setaria (Planta)/enzimología , Terpenos/metabolismo
7.
New Phytol ; 230(6): 2387-2403, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33740256

RESUMEN

Plants synthesize diverse diterpenoids with numerous functions in organ development and stress resistance. However, the role of diterpenoids in glandular trichome (GT) development and GT-localized biosynthesis in plants remains unknown. Here, the identification of 10 diterpene synthases (diTPSs) revealed the diversity of diterpenoid biosynthesis in Artemisia annua. Protein-protein interactions (PPIs) between AaKSL1 and AaCPS2 in the plastids highlighted their potential functions in modulating metabolic flux to gibberellins (GAs) or ent-isopimara-7,15-diene-derived metabolites (IDMs) through metabolic engineering. A phenotypic analysis of transgenic plants suggested a complex repertoire of diterpenoids in Artemisia annua with important roles in GT formation, artemisinin accumulation and stress resilience. Metabolic engineering of diterpenoids simultaneously increased the artemisinin yield and stress resistance. Transcriptome and metabolic profiling suggested that bioactive GA4 /GA1 promote GT formation. Collectively, these results expand our knowledge of diterpenoids and show the potential of diterpenoids to simultaneously improve both the GT-localized metabolite yield and stress resistance, in planta.


Asunto(s)
Artemisia annua , Artemisininas , Artemisia annua/genética , Giberelinas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Tricomas
8.
Proc Natl Acad Sci U S A ; 115(37): E8634-E8641, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30139915

RESUMEN

Insects use a diverse array of specialized terpene metabolites as pheromones in intraspecific interactions. In contrast to plants and microbes, which employ enzymes called terpene synthases (TPSs) to synthesize terpene metabolites, limited information from few species is available about the enzymatic mechanisms underlying terpene pheromone biosynthesis in insects. Several stink bugs (Hemiptera: Pentatomidae), among them severe agricultural pests, release 15-carbon sesquiterpenes with a bisabolene skeleton as sex or aggregation pheromones. The harlequin bug, Murgantia histrionica, a specialist pest of crucifers, uses two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol as a male-released aggregation pheromone called murgantiol. We show that MhTPS (MhIDS-1), an enzyme unrelated to plant and microbial TPSs but with similarity to trans-isoprenyl diphosphate synthases (IDS) of the core terpene biosynthetic pathway, catalyzes the formation of (1S,6S,7R)-1,10-bisaboladien-1-ol (sesquipiperitol) as a terpene intermediate in murgantiol biosynthesis. Sesquipiperitol, a so-far-unknown compound in animals, also occurs in plants, indicating convergent evolution in the biosynthesis of this sesquiterpene. RNAi-mediated knockdown of MhTPS mRNA confirmed the role of MhTPS in murgantiol biosynthesis. MhTPS expression is highly specific to tissues lining the cuticle of the abdominal sternites of mature males. Phylogenetic analysis suggests that MhTPS is derived from a trans-IDS progenitor and diverged from bona fide trans-IDS proteins including MhIDS-2, which functions as an (E,E)-farnesyl diphosphate (FPP) synthase. Structure-guided mutagenesis revealed several residues critical to MhTPS and MhFPPS activity. The emergence of an IDS-like protein with TPS activity in M. histrionica demonstrates that de novo terpene biosynthesis evolved in the Hemiptera in an adaptation for intraspecific communication.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Heterópteros/metabolismo , Proteínas de Insectos/metabolismo , Feromonas/metabolismo , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/genética , Animales , Vías Biosintéticas/genética , Heterópteros/enzimología , Heterópteros/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Masculino , Modelos Moleculares , Estructura Molecular , Feromonas/química , Filogenia , Fosfatos de Poliisoprenilo/metabolismo , Dominios Proteicos , Sesquiterpenos/química , Estereoisomerismo
9.
Plant J ; 100(6): 1254-1272, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31448467

RESUMEN

Taiwania cryptomerioides is a monotypic gymnosperm species, valued for the high decay resistance of its wood. This durability has been attributed to the abundance of terpenoids, especially the major diterpenoid metabolite ferruginol, with antifungal and antitermite activity. Specialized diterpenoid metabolism in gymnosperms primarily recruits bifunctional class-I/II diterpene synthases (diTPSs), whereas monofunctional class-II and class-I enzymes operate in angiosperms. In this study, we identified a previously unrecognized group of monofunctional diTPSs in T. cryptomerioides, which suggests a distinct evolutionary divergence of the diTPS family in this species. Specifically, five monofunctional diTPS functions not previously observed in gymnosperms were characterized, including monofunctional class-II enzymes forming labda-13-en-8-ol diphosphate (LPP, TcCPS2) and (+)-copalyl diphosphate (CPP, TcCPS4), and three class-I diTPSs producing biformene (TcKSL1), levopimaradiene (TcKSL3) and phyllocladanol (TcKSL5), respectively. Methyl jasmonate (MeJA) elicited the accumulation of levopimaradiene and the corresponding biosynthetic diTPS genes, TcCPS4 and TcKSL3, is consistent with a possible role in plant defense. Furthermore, TcCPS4 and TcKSL3 are likely to contribute to abietatriene biosynthesis via levopimaradiene as an intermediate in ferruginol biosynthesis in Taiwania. In conclusion, this study provides deeper insight into the functional landscape and molecular evolution of specialized diterpenoid metabolism in gymnosperms as a basis to better understand the role of these metabolites in tree chemical defense.


Asunto(s)
Cupressaceae/enzimología , Cupressaceae/genética , Cupressaceae/metabolismo , Cycadopsida/genética , Cycadopsida/metabolismo , Diterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Cupressaceae/clasificación , Escherichia coli/genética , Evolución Molecular , Fósiles , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Redes y Vías Metabólicas/genética , Proteínas Recombinantes , Análisis de Secuencia de Proteína , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 114(5): 974-979, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096378

RESUMEN

The diversity of small molecules formed via plant diterpene metabolism offers a rich source of known and potentially new biopharmaceuticals. Among these, the microtubule-destabilizing activity of pseudolaric acid B (PAB) holds promise for new anticancer agents. PAB is found, perhaps uniquely, in the coniferous tree golden larch (Pseudolarix amabilis, Pxa). Here we describe the discovery and mechanistic analysis of golden larch terpene synthase 8 (PxaTPS8), an unusual diterpene synthase (diTPS) that catalyzes the first committed step in PAB biosynthesis. Mining of the golden larch root transcriptome revealed a large TPS family, including the monofunctional class I diTPS PxaTPS8, which converts geranylgeranyl diphosphate into a previously unknown 5,7-fused bicyclic diterpene, coined "pseudolaratriene." Combined NMR and quantum chemical analysis verified the structure of pseudolaratriene, and co-occurrence with PxaTPS8 and PAB in P amabilis tissues supports the intermediacy of pseudolaratriene in PAB metabolism. Although PxaTPS8 adopts the typical three-domain structure of diTPSs, sequence phylogeny places the enzyme with two-domain TPSs of mono- and sesqui-terpene biosynthesis. Site-directed mutagenesis of PxaTPS8 revealed several catalytic residues that, together with quantum chemical calculations, suggested a substantial divergence of PxaTPS8 from other TPSs leading to a distinct carbocation-driven reaction mechanism en route to the 5,7-trans-fused bicyclic pseudolaratriene scaffold. PxaTPS8 expression in microbial and plant hosts provided proof of concept for metabolic engineering of pseudolaratriene.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Diterpenos/metabolismo , Larix/metabolismo , Proteínas de Plantas/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Dominio Catalítico , Clonación Molecular , ADN Complementario/genética , Larix/enzimología , Larix/genética , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
11.
BMC Plant Biol ; 19(1): 114, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30909879

RESUMEN

BACKGROUND: Horehound (Marrubium vulgare) is a medicinal plant whose signature bioactive compounds, marrubiin and related furanoid diterpenoid lactones, have potential applications for the treatment of cardiovascular diseases and type II diabetes. Lack of scalable plant cultivation and the complex metabolite profile of M. vulgare limit access to marrubiin via extraction from plant biomass. Knowledge of the marrubiin-biosynthetic enzymes can enable the development of metabolic engineering platforms for marrubiin production. We previously identified two diterpene synthases, MvCPS1 and MvELS, that act sequentially to form 9,13-epoxy-labd-14-ene. Conversion of 9,13-epoxy-labd-14-ene by cytochrome P450 monooxygenase (P450) enzymes can be hypothesized to facilitate key functional modification reactions in the formation of marrubiin and related compounds. RESULTS: Mining a M. vulgare leaf transcriptome database identified 95 full-length P450 candidates. Cloning and functional analysis of select P450 candidates showing high transcript abundance revealed a member of the CYP71 family, CYP71AU87, that catalyzed the hydroxylation of 9,13-epoxy-labd-14-ene to yield two isomeric products, 9,13-epoxy labd-14-ene-18-ol and 9,13-epoxy labd-14-ene-19-ol, as verified by GC-MS and NMR analysis. Additional transient Nicotiana benthamiana co-expression assays of CYP71AU87 with different diterpene synthase pairs suggested that CYP71AU87 is specific to the sequential MvCPS1 and MvELS product 9,13-epoxy-labd-14-ene. Although the P450 products were not detectable in planta, high levels of CYP71AU87 gene expression in marrubiin-accumulating tissues supported a role in the formation of marrubiin and related diterpenoids in M. vulgare. CONCLUSIONS: In a sequential reaction with the diterpene synthase pair MvCPS1 and MvELS, CYP71AU87 forms the isomeric products 9,13-epoxy labd-14-ene-18/19-ol as probable intermediates in marrubiin biosynthesis. Although its metabolic relevance in planta will necessitate further genetic studies, identification of the CYP71AU87 catalytic activity expands our knowledge of the functional landscape of plant P450 enzymes involved in specialized diterpenoid metabolism and can provide a resource for the formulation of marrubiin and related bioactive natural products.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/metabolismo , Marrubium/metabolismo , Proteínas de Plantas/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Flores/genética , Flores/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hidroxilación , Isomerismo , Marrubium/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Nicotiana/genética
12.
Chembiochem ; 20(1): 111-117, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30393911

RESUMEN

The diterpene synthase clerodienyl diphosphate synthase 1 (PvCPS1) from the crop plant switchgrass (Panicum virgatum) stereoselectively converts (E,E,E)-geranylgeranyl diphosphate (GGPP) into the clerodane natural product, cis-trans-clerodienyl diphosphate (CLPP, 1). Structure-guided point mutations of PvCPS1 redirected product stereoselectivity toward the formation of a rare cis-clerodane diastereomer, cis-cis-CLPP (2). Additionally, an alternative cis-clerodane diastereomer, (5S,8S,9R,10R)-13Z-CLPP (3), was produced when treating PvCPS1 and select variants thereof with the cis-prenyl substrate (Z,Z,Z)-nerylneryl diphosphate (NNPP). These results support the hypothesis that substrate configuration and minor active-site alterations impact precatalysis substrate folding in the stereoselective biosynthesis of clerodane diterpenoid scaffolds, and can be employed to provide enzymatic access to a broader range of bioactive clerodane natural products.


Asunto(s)
Transferasas Alquil y Aril/química , Diterpenos de Tipo Clerodano/metabolismo , Proteínas de Plantas/química , Transferasas Alquil y Aril/genética , Biocatálisis , Dominio Catalítico , Diterpenos de Tipo Clerodano/química , Modelos Químicos , Panicum/enzimología , Proteínas de Plantas/genética , Mutación Puntual , Teoría Cuántica , Estereoisomerismo , Termodinámica
13.
Plant Physiol ; 178(1): 54-71, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30008447

RESUMEN

Diterpenoids constitute a diverse class of metabolites with critical functions in plant development, defense, and ecological adaptation. Major monocot crops, such as maize (Zea mays) and rice (Oryza sativa), deploy diverse blends of specialized diterpenoids as core components of biotic and abiotic stress resilience. Here, we describe the genome-wide identification and functional characterization of stress-related diterpene synthases (diTPSs) in the dedicated bioenergy crop switchgrass (Panicum virgatum). Mining of the allotetraploid switchgrass genome identified an expansive diTPS family of 31 members, and biochemical analysis of 11 diTPSs revealed a modular metabolic network producing a diverse array of diterpenoid metabolites. In addition to ent-copalyl diphosphate (CPP) and ent-kaurene synthases predictably involved in gibberellin biosynthesis, we identified syn-CPP and ent-labda-13-en-8-ol diphosphate (LPP) synthases as well as two diTPSs forming (+)-labda-8,13E-dienyl diphosphate (8,13-CPP) and ent-neo-cis-trans-clerodienyl diphosphate (CT-CLPP) scaffolds not observed previously in plants. Structure-guided mutagenesis of the (+)-8,13-CPP and ent-neo-CT-CLPP synthases revealed residue substitutions in the active sites that altered product outcome, representing potential neofunctionalization events that occurred during diversification of the switchgrass diTPS family. The conversion of ent-CPP, ent-LPP, syn-CPP, and ent-neo-CT-CLPP by promiscuous diTPSs further yielded distinct labdane-type diterpene olefins and alcohols. Of these metabolites, the formation of 9ß-hydroxy-syn-pimar-15-ene and the expression of the corresponding genes were induced in roots and leaves in response to oxidative stress and ultraviolet irradiation, indicating their possible roles in abiotic stress adaptation. Together, these findings expand the known chemical space of diterpenoid metabolism in monocot crops toward systematically investigating and ultimately improving stress resilience traits in crop species.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Biocombustibles , Diterpenos de Tipo Kaurano/metabolismo , Panicum/metabolismo , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/genética , Dominio Catalítico , Diterpenos de Tipo Kaurano/química , Regulación de la Expresión Génica de las Plantas , Variación Genética , Modelos Moleculares , Estructura Molecular , Familia de Multigenes , Panicum/genética , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Dominios Proteicos
14.
Plant Physiol ; 176(4): 2677-2690, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29475898

RESUMEN

Terpenoids are a major component of maize (Zea mays) chemical defenses that mediate responses to herbivores, pathogens, and other environmental challenges. Here, we describe the biosynthesis and elicited production of a class of maize diterpenoids, named dolabralexins. Dolabralexin biosynthesis involves the sequential activity of two diterpene synthases, ENT-COPALYL DIPHOSPHATE SYNTHASE (ZmAN2) and KAURENE SYNTHASE-LIKE4 (ZmKSL4). Together, ZmAN2 and ZmKSL4 form the diterpene hydrocarbon dolabradiene. In addition, we biochemically characterized a cytochrome P450 monooxygenase, ZmCYP71Z16, which catalyzes the oxygenation of dolabradiene to yield the epoxides 15,16-epoxydolabrene (epoxydolabrene) and 3ß-hydroxy-15,16-epoxydolabrene (epoxydolabranol). The absence of dolabradiene and epoxydolabranol in Zman2 mutants under elicited conditions confirmed the in vivo biosynthetic requirement of ZmAN2. Combined mass spectrometry and NMR experiments demonstrated that much of the epoxydolabranol is further converted into 3ß,15,16-trihydroxydolabrene (trihydroxydolabrene). Metabolite profiling of field-grown maize root tissues indicated that dolabralexin biosynthesis is widespread across common maize cultivars, with trihydroxydolabrene as the predominant diterpenoid. Oxidative stress induced dolabralexin accumulation and transcript expression of ZmAN2 and ZmKSL4 in root tissues, and metabolite and transcript accumulation were up-regulated in response to elicitation with the fungal pathogens Fusarium verticillioides and Fusarium graminearum Consistently, epoxydolabranol significantly inhibited the growth of both pathogens in vitro at 10 µg mL-1, while trihydroxydolabrene-mediated inhibition was specific to Fverticillioides These findings suggest that dolabralexins have defense-related roles in maize stress interactions and expand the known chemical space of diterpenoid defenses as genetic targets for understanding and ultimately improving maize resilience.


Asunto(s)
Vías Biosintéticas , Diterpenos/metabolismo , Estrés Fisiológico , Zea mays/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Resistencia a la Enfermedad/genética , Diterpenos/química , Fusarium/clasificación , Fusarium/fisiología , Regulación de la Expresión Génica de las Plantas , Estructura Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad de la Especie , Zea mays/genética , Zea mays/microbiología
15.
Nature ; 497(7451): 579-84, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23698360

RESUMEN

Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Picea/genética , Secuencia Conservada/genética , Elementos Transponibles de ADN/genética , Silenciador del Gen , Genes de Plantas/genética , Genómica , Internet , Intrones/genética , Fenotipo , ARN no Traducido/genética , Análisis de Secuencia de ADN , Secuencias Repetidas Terminales/genética , Transcripción Genética/genética
16.
Plant J ; 89(5): 885-897, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27865008

RESUMEN

Salvia divinorum commonly known as diviner's sage, is an ethnomedicinal plant of the mint family (Lamiaceae). Salvia divinorum is rich in clerodane-type diterpenoids, which accumulate predominantly in leaf glandular trichomes. The main bioactive metabolite, salvinorin A, is the first non-nitrogenous natural compound known to function as an opioid-receptor agonist, and is undergoing clinical trials for potential use in treating neuropsychiatric diseases and drug addictions. We report here the discovery and functional characterization of two S. divinorum diterpene synthases (diTPSs), the ent-copalyl diphosphate (ent-CPP) synthase SdCPS1, and the clerodienyl diphosphate (CLPP) synthase SdCPS2. Mining of leaf- and trichome-specific transcriptomes revealed five diTPSs, two of which are class II diTPSs (SdCPS1-2) and three are class I enzymes (SdKSL1-3). Of the class II diTPSs, transient expression in Nicotiana benthamiana identified SdCPS1 as an ent-CPP synthase, which is prevalent in roots and, together with SdKSL1, exhibits a possible dual role in general and specialized metabolism. In vivo co-expression and in vitro assays combined with nuclear magnetic resonance (NMR) analysis identified SdCPS2 as a CLPP synthase. A role of SdCPS2 in catalyzing the committed step in salvinorin A biosynthesis is supported by its biochemical function, trichome-specific expression and absence of additional class II diTPSs in S. divinorum. Structure-guided mutagenesis revealed four catalytic residues that enabled the re-programming of SdCPS2 activity to afford four distinct products, thus advancing our understanding of how neo-functionalization events have shaped the array of different class II diTPS functions in plants, and may promote synthetic biology platforms for a broader spectrum of diterpenoid bioproducts.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Diterpenos de Tipo Clerodano/metabolismo , Diterpenos/metabolismo , Proteínas de Plantas/metabolismo , Salvia/enzimología , Salvia/metabolismo , Transferasas Alquil y Aril/genética , Productos Biológicos/metabolismo , Proteínas de Plantas/genética , Salvia/genética
19.
Zoo Biol ; 36(1): 74-86, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27862242

RESUMEN

While seasonality has often been investigated with respect to reproduction, seasonality of mortality has received less attention. We investigated whether a seasonal signal of mortality exists in wild ruminants kept in zoos, using data from 60,591 individuals of 88 species. We quantified the mortality in the 3 consecutive months with the highest above-baseline mortality (3 MM). 3 MM was not related to relative life expectancy of species, indicating that seasonal mortality does not necessarily impact husbandry success. Although 3 MM was mainly observed in autumn/winter months, there was no evidence for an expected negative relationship with the latitude of the species' natural habitat and no positive relationship between 3 MM and the mean temperature in that habitat, indicating no evidence for species from lower latitudes/warmer climates being more susceptible to seasonal mortality under zoo conditions. 3 MM was related to reproductive biology, with seasonally reproducing species also displaying more seasonal mortality. This pattern differed between groups: In cervids, the onset of seasonal mortality appeared linked to the onset of rut in both sexes. This was less evident in bovids, where in a number of species (especially caprids), the onset of female seasonal mortality was linked to the lambing period. While showing that the origin of a species from warmer climate zones does not constrain husbandry success in ruminants in terms of an increased seasonal mortality, the results suggest that husbandry measures aimed at protecting females from rutting males are important, especially in cervids. Zoo Biol. 36:74-86, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Animales de Zoológico , Mortalidad , Rumiantes , Estaciones del Año , Crianza de Animales Domésticos , Animales , Ambiente , Femenino , Masculino , Estudios Retrospectivos , Factores Sexuales
20.
Plant J ; 83(5): 783-93, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26119826

RESUMEN

Grindelia robusta or gumweed, is a medicinal herb of the sunflower family that forms a diverse suite of diterpenoid natural products. Its major constituents, grindelic acid and related grindelane diterpenoids accumulate in a resinous exudate covering the plants' surfaces, most prominently the unopened composite flower. Recent studies demonstrated potential pharmaceutical applications for grindelic acid and its synthetic derivatives. Mining of the previously published transcriptome of G. robusta flower tissue identified two additional diterpene synthases (diTPSs). We report the in vitro and in vivo functional characterization of an ent-kaurene synthase of general metabolism (GrTPS4) and a class II diTPS (GrTPS2) of specialized metabolism that converts geranylgeranyl diphosphate (GGPP) into labda-7,13E-dienyl diphosphate as verified by nuclear magnetic resonance (NMR) analysis. Tissue-specific transcript abundance of GrTPS2 in leaves and flowers accompanied by the presence of an endocyclic 7,13 double bond in labda-7,13E-dienyl diphosphate suggest that GrTPS2 catalyzes the first committed reaction in the biosynthesis of grindelic acid and related grindelane metabolites. With the formation of labda-7,13E-dienyl diphosphate, GrTPS2 adds an additional function to the portfolio of monofunctional class II diTPSs, which catalytically most closely resembles the bifunctional labda-7,13E-dien-15-ol synthase of the lycopod Selaginella moellendorffii. Together with a recently identified functional diTPS pair of G. robusta producing manoyl oxide, GrTPS2 lays the biosynthetic foundation of the diverse array of labdane-related diterpenoids in the genus Grindelia. Knowledge of these natural diterpenoid metabolic pathways paves the way for developing biotechnology approaches toward producing grindelic acid and related bioproducts.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Diterpenos de Tipo Kaurano/metabolismo , Diterpenos/metabolismo , Grindelia/genética , Grindelia/metabolismo , Liasas Intramoleculares/metabolismo , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/genética , Diterpenos de Tipo Kaurano/genética , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Liasas Intramoleculares/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA