Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(28): e2202005, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35714298

RESUMEN

Realizing perfect light absorption in stacked thin films of dielectrics and metals through critical light coupling has recently received intensive research attention. In addition, realizing ultra-thin perfect absorber and tunable perfect absorber in the visible spectrum is essential for novel optoelectronics applications. However, the existing thin film stacks cannot show tunable perfect absorption in a wide-angle range. Here, a tunable perfect absorption from normal incidence to a wide-angle range (0° to 70°) by utilizing a two-layer stack consisting of a high refractive index low-loss dielectric on a high reflecting metal is proposed. This is experimentally demonstrated by depositing a thin layer of low-loss phase change material such as stibnite (Sb2 S3 ) on a thin layer of silver. This structure shows tunable perfect absorption with large spectral tunability in the visible wavelength. Furthermore, the absorption enhancement in 2D materials by transferring monolayer molybdenum disulfide on the stack, which shows 96% light absorption with enhanced photoluminescence, is demonstrated. In addition, the thin film stack can work as a scalable phase modulator offering a maximum phase tunability of ≈140° by changing the structural state of Sb2 S3 from amorphous to crystalline.

2.
Opt Express ; 19(3): 2502-18, 2011 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-21369070

RESUMEN

Achieving sub-100 nm resolution over a broad visible bandwidth has long been an elusive goal in the nano-imaging of cell-surface interfaces. While metamaterial super-lenses and near-field optics have been previously demonstrated, these techniques can operate only at one wavelength, and do not provide accesses to the cell-surface interfaces. Here, we investigate a broadband 2D lens comprised of an oblate spheroidal dielectric cavity embedded just beneath a planar metal surface. The lens operates by adiabatically focusing asymmetric plasmon energies at sub-100 nm scale on the low-index side of the thin metal film formed between the cavity top and the planar metal surface. We then proposed the use of our lens in a high-resolution far-field confocal microscopy setup. Due to the surface-field nature of our lens, the presented system holds potential as an indispensable tool for cell-surface interfacial studies that require sub-100 nm hyper-spectral imaging analysis.


Asunto(s)
Aumento de la Imagen/instrumentación , Lentes , Microscopía Confocal/instrumentación , Nanopartículas/ultraestructura , Nanotecnología/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
3.
J Nanosci Nanotechnol ; 10(11): 7208-11, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21137899

RESUMEN

The chiral phospholipids 1,2-bis-(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9 PC) can self assemble into lipid nanotubules. This hollow cylindrical supramolecular structure shows promise in a number of biotechnological applications. The mechanism of lipid tubule formation was initiated by assembling of lipid bilayer sheets from amphiphilic solution. Upon cooling, small ribbons were detached from the sheets and rolled up into helical tubules. The lipid tubules obtained were 0.6-0.8 microm in diameter and approximately 50 microm in length. Raman spectra of individual polymerized lipid tubules were measured by focused laser excitation of 532 nm leading to intense and reproducible Raman spectra. The chirality of lipid tubules was investigated by atomic force microscopy (AFM) and confocal Raman microscopy. We report the Raman mapping images revealing helical tubular profiles of C=C stretching and C[triple bond]C stretching of lipid tubules. Circular dichroism property of lipid tubules has also been probed with a 532 nm laser.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA