Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Biometeorol ; 67(10): 1569-1579, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37522973

RESUMEN

Rubber (Hevea brasiliensis) latex production is crucial to the local economy, yet Xishuangbanna's climate is considered sub-optimal for rubber cultivation. The prevalence of the powdery mildew disease (Oidium heveae) in this region has decreased the annual latex yield by 20%. Rubber latex yield is influenced by several factors, including temperature, disease, other biotic conditions, and plantation management. However, the interrelationships and potential influencing networks between rubber latex yield and these factors are rarely quantitatively assessed, and understanding their impacts on latex yield could inform better management practices. To address this gap, we investigated the effects of temperature, phenology, and powdery mildew disease on rubber latex yield in March using observational data on daily rubber latex yield combined with detailed phenology, powdery mildew, and temperature data from 2004 to 2010 in a state farm in the Xishuangbanna, Yunnan, China. We found that the critical influencing periods of daily temperature difference (or diurnal temperature difference) on the rubber latex yield were during Nov 27-Jan 19 and Jan 21-Mar 17. Partial least square regression analysis and variance partitioning analysis were conducted on the 35 phenological variables, eight powdery mildew-related variables, and two climatic variables. The most influential factors were identified as the factors of the daily temperature differences during Jan-Mar, the duration of leaf flushing phenology, and mean and maximum percentage of leaves infected by powdery mildew. Subsequent canonical correlation analysis and linear regression found that temperature difference directly affected the rubber latex yield and indirectly affected the yield through phenology and powdery mildew disease. Raised daily temperature differences from Jan to Mar had the greatest impact, leading to a higher rubber latex yield. Our comprehensive quantitative assessment revealed the relative importance of antecedent daily temperature differences, phenology, and powdery mildew disease as well as their complex interconnections in influencing rubber latex yield. Our findings are essential to future studies on both powdery mildew disease and rubber latex yield, and also develop rubber latex models.


Asunto(s)
Hevea , Goma , Látex , Temperatura , China
2.
Int J Biometeorol ; 65(10): 1707-1718, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33852050

RESUMEN

Rubber powdery mildew disease (Oidium heveae) is a serious threat to natural rubber production (Hevea brasiliensis) in some rubber developing regions of the world. Both phenological- and meteorological-related factors have been reported influencing the powdery mildew disease. However, few studies have investigated the effects of both phenological- and meteorological-related factors on the disease. The objective of this study is to quantify the contributions of phenological- and meteorological-related factors to affect the disease. We used the partial least squares (PLS) regression method to comprehensively quantify the effects of thirty-five phenological related factors and six meteorological factors on the infection level of powdery mildew of rubber trees over 9-year records (2003-2011). The relative contributions of significant factors were further investigated by the variation partition analysis. We found that the most influential variables were the mean temperature during winter and the duration of leaf development to maturation which explained 32 and 26% of the variations in the infection level. We found the controlling role of winter mean temperature, for the first time, on the infection level of powdery mildew. The controlling role of winter temperature may have directly increase the infection level when winter temperature is high and indirectly increase the infection level through prolonging the duration of leaf development to maturation, although the duration itself had smaller influences. We detected a warming trend of the winter temperatures from 2003 to 2011, which indicates that the infection level of powdery mildew will be increased if the winter warming continues.


Asunto(s)
Ascomicetos , Goma , Enfermedades de las Plantas , Temperatura
3.
Int J Biometeorol ; 64(11): 1835-1845, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32666309

RESUMEN

Rubber powdery mildew caused by the foliar fungi Oidium heveae is one of the main diseases affecting rubber plantations (Hevea brasiliensis) worldwide. It is particularly serious in sub-optimal growing areas, such as Xishuangbanna in SW China. To prevent and control this disease, fungicides causing serious environmental problems are widely used. Strong correlations between the infection level and the temperature variables were reported previously, but they were related to monthly data that did not allow unraveling the patterns during the entire sensitive period. We correlated the infection level of powdery mildew of rubber trees recorded over 2003-2011 with antecedent 365 days daily temperature variables using partial least squares (PLS) regression. Our PLS regression results showed that the infection level of powdery mildew responded differently to the temperature variables of the defoliation and refoliation periods. Further analysis with Kriging interpolation showed that the infection level increased by 20% and 11%, respectively, per 1 °C rise of the daily maximum and mean temperature in the defoliation season, while it decreased by 8% and 10%, respectively, per 1 °C rise of the daily maximum and temperature difference in the refoliation season. This pattern was likely linked to the effects of temperature on leaf phenology. It seems highly possible that the infection level of powdery mildew increases, as increasing trends of maximum temperature and mean temperature during the defoliation continue.


Asunto(s)
Ascomicetos , Infecciones , China , Humanos , Goma , Temperatura
4.
Int J Biometeorol ; 63(5): 607-616, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29130120

RESUMEN

The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.


Asunto(s)
Cambio Climático , Hevea/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Ascomicetos , China , Hevea/microbiología , Modelos Teóricos , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/microbiología , Estaciones del Año , Temperatura , Clima Tropical
5.
J Chem Ecol ; 42(2): 85-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26879680

RESUMEN

The invasive clonal plant Wedelia trilobata contains higher levels of ent-kaurane diterpenes, which are precursors of gibberellins (GAs), and higher rates of clonal growth than its native congener W. chinensis in invaded habitats. We hypothesized that the higher levels of endogenous GAs facilitate greater ramet growth in W. trilobata compared with W. chinensis. We quantified endogenous levels of GA1+3 in the two species and compared their growth responses to the changes of endogenous and exogenous GA3 by using short-term and long-term hydroponics experiments. After a period of homogeneous cultivation, levels of endogenous GA1+3 were higher in W. trilobata than in W. chinensis. The reduction of endogenous GAs repressed the emergence of adventitious roots and the growth of W. trilobata in the initial cultivation stage, and inhibited its shoot elongation and biomass. Levels of endogenous GA1+3 were positively correlated with the length of shoots and adventitious roots of W. trilobata. Adventitious roots of W. trilobata also emerged earlier and grew faster when treated with exogenous GA3. In contrast, exogenous GA3 treatment inhibited the length of adventitious roots in W. chinensis, and levels of endogenous GA1+3 did not correlate with shoot or adventitious root length. Our study suggests that GAs accelerate the rapid clonal growth of W. trilobata, more than that of its native congener W. chinensis, illustrating the relationship between plant hormones and the clonal growth of invasive plants. These findings are important for understanding the mechanisms associated with the invasiveness of clonal plants and their potential management.


Asunto(s)
Giberelinas/fisiología , Especies Introducidas , Wedelia/fisiología , Raíces de Plantas/crecimiento & desarrollo , Wedelia/crecimiento & desarrollo
6.
Environ Monit Assess ; 187(1): 4137, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25416130

RESUMEN

Hainan, the largest tropical island in China, belongs to the Indo-Burma biodiversity hotspot. The Changhua watershed is a center of endemism for plants and birds and the cradle of Hainan's main rivers. However, this area has experienced recent and ongoing deforestation and habitat fragmentation. To quantify habitat loss and fragmentation of natural forests, as well as the land-cover changes in the Changhua watershed, we analyzed Landsat images obtained in 1988, 1995, and 2005. Land-cover dynamics analysis showed that natural forests increased in area (97,909 to 104,023 ha) from 1988 to 1995 but decreased rapidly to 76,306 ha over the next decade. Rubber plantations increased steadily throughout the study period while pulp plantations rapidly expanded after 1995. Similar patterns of land cover change were observed in protected areas, indicating a lack of enforcement. Natural forests conversion to rubber and pulp plantations has a general negative effect on biodiversity, primarily through habitat fragmentation. The fragmentation analysis showed that natural forests area was reduced and patch number increased, while patch size and connectivity decreased. These land-cover changes threatened local biodiversity, especially island endemic species. Both natural forests losses and fragmentation should be stopped by strict enforcement to prevent further damage. Preserving the remaining natural forests and enforcing the status of protected areas should be a management priority to maximize the watershed's biodiversity conservation value.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Bosques , Animales , China , Ecosistema , Monitoreo del Ambiente/métodos , Árboles
7.
Ann Bot ; 114(2): 425-33, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24825293

RESUMEN

BACKGROUND AND AIMS: Invasive clonal plants have two reproduction patterns, namely sexual and vegetative propagation. However, seedling recruitment of invasive clonal plants can decline as the invasion process proceeds. For example, although the invasive clonal Wedelia trilobata (Asteraceae) produces numerous seeds, few seedlings emerge under its dense population canopy in the field. In this study it is hypothesized that light limitation and the presence of a thick layer of its own litter may be the primary factors causing the failure of seedling recruitment for this invasive weed in the field. METHODS: A field survey was conducted to determine the allocation of resources to sexual reproduction and seedling recruitment in W. trilobata. Seed germination was also determined in the field. Effects of light and W. trilobata leaf extracts on seed germination and seedling growth were tested in the laboratory. KEY RESULTS: Wedelia trilobata blooms profusely and produces copious viable seeds in the field. However, seedlings of W. trilobata were not detected under mother ramets and few emerged seedlings were found in the bare ground near to populations. In laboratory experiments, low light significantly inhibited seed germination. Leaf extracts also decreased seed germination and inhibited seedling growth, and significant interactions were found between low light and leaf extracts on seed germination. However, seeds were found to germinate in an invaded field after removal of the W. trilobata plant canopy. CONCLUSIONS: The results indicate that lack of light and the presence of its own litter might be two major factors responsible for the low numbers of W. trilobata seedlings found in the field. New populations will establish from seeds once the limiting factors are eliminated, and seeds can be the agents of long-distance dispersal; therefore, prevention of seed production remains an important component in controlling the spread of this invasive clonal plant.


Asunto(s)
Luz , Hojas de la Planta/fisiología , Malezas/fisiología , Reproducción Asexuada , Plantones/crecimiento & desarrollo , Wedelia/fisiología , Wedelia/efectos de la radiación , Análisis de Varianza , China , Células Clonales , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Extractos Vegetales/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de la radiación , Malezas/efectos de los fármacos , Malezas/efectos de la radiación , Plantones/efectos de los fármacos , Plantones/efectos de la radiación , Wedelia/efectos de los fármacos
8.
Plant Divers ; 45(1): 98-103, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36876313

RESUMEN

The leaf phenology of trees has received particular attention for its crucial role in the global water and carbon balances, ecosystem, and species distribution. However, current studies on leaf phenology have mainly focused on temperate trees, while few studies including tropical trees. Little attention has been paid to globally extensive industrial plantations. Rubber plantations are important to both the local and global economies. In this study, we investigated the legacy effects of defoliation phenology on the following year's leaf flushing, leaf disease, and also latex yield of rubber trees, an economically important tree to local people and the world. Results show that extended duration of defoliation increased the subsequent duration of refoliation and rates of infection by powdery mildew disease, but led to reduced latex yield in March. This legacy effect of rubber defoliation may relate to the carbohydrate reserved in the trees. A longer duration of defoliation would consume more reserved carbohydrates, reducing available reserves for disease defense and latex production. Extended duration of defoliation period was associated with either a lower temperature before the cessation of latex tapping in October-November and/or a higher temperature after the cessation of latex tapping in December-January. Leaf falling signals the end of photosynthetic activities in deciduous trees. Thus, the leaf falling phenology will impact ecological processes involving rubber trees. Our findings indicated that the inclusion of defoliation periods in future rubber trees' research, will be crucial to furthering our understanding of leaf flushing, powdery mildew disease, and latex yield.

9.
J Environ Manage ; 96(1): 64-73, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22208399

RESUMEN

Hainan, the largest tropical island in China, belongs to the Indo-Burma biodiversity hotspot and harbors large areas of tropical forests, particularly in the uplands. The Changhua watershed is the cradle of Hainan's main river and a center of endemism for plants and birds. The watershed contains great habitat diversity and is an important conservation area. We analyzed the impact of rubber and pulp plantations on the distribution and area of tropical forest in the watershed, using remote sensing analysis of Landsat images from 1988, 1995 and 2005. From 1988 to 1995, natural forest increased in area (979-1040 sq km) but decreased rapidly (763 sq km) over the next decade. Rubber plantations increased steadily through the study period while pulp plantations appeared after 1995 but occupied 152 sq km by 2005. Rubber and pulp plantations displace different types of natural forest and do not replace one another. Because pulp is not as profitable as rubber and existing pulp processing capacity greatly exceeds local supply, considerable pressure exists on remaining upland forests. We recommend for future management that these plantation forests be reclassified as 'industrial', making a clear policy distinction between natural and industrial forestry. Additionally, the local government should work to enforce existing laws preventing forest conversion on marginal and protected areas.


Asunto(s)
Ambiente , Agricultura Forestal/métodos , Árboles , China , Conservación de los Recursos Naturales/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos , Goma , Clima Tropical
10.
Environ Pollut ; 267: 115649, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33254657

RESUMEN

Invasive plants readily invade metal-contaminated areas. The hyperaccumulation of toxic heavy metals is not an uncommon feature among plant species. Although several hypotheses were proposed to explain this phenomenon, it is currently unclear how hyperaccumulation may benefit plants. The invasive Crofton weed (Ageratina adenophora) is a known hyperaccumulator of chromium and lead. We previously found that the species can also hyperaccumulate cadmium. The role of phytoaccumulation in defense to pathogen attack is unclear. We inoculated A. adenophora plants with a common generalist pathogen (Rhizoctonia solani) to test its resistance under cadmium treatment. We found evidence that cadmium hyperaccumulation reduced pathogen infection in A. adenophora. Our findings indicate elemental defense is highly cost efficient for hyperaccumulators inhabiting metal-contaminated sites, where plants were only modestly affected by cadmium. The reduction in pathogen damage conferred by cadmium was relatively high, particularly under lower cadmium levels. However, the benefits at higher levels may be capped. Elemental defense may be a key mechanism for plant invasion into polluted sites, especially in regions with widespread industrial activity. Our study highlights the importance of testing different metal concentrations when testing plant resistance and the importance of considering enemy attack when selecting plants for phytoremediation.


Asunto(s)
Ageratina , Metales Pesados , Biodegradación Ambiental , Cadmio , Cromo , Intoxicación por Metales Pesados , Humanos , Metales
11.
PLoS One ; 9(11): e113964, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25426856

RESUMEN

The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants.


Asunto(s)
Asteraceae/fisiología , Biodiversidad , Especies Introducidas , China , Ecosistema , Fenómenos Fisiológicos de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA