Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 189(1): 301-314, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35171294

RESUMEN

Trichomes, the hair-like structures located on aerial parts of most vascular plants, are associated with a wide array of biological processes and affect the economic value of certain species. The processes involved in unicellular trichome formation have been well-studied in Arabidopsis (Arabidopsis thaliana). However, our understanding of the morphological changes and the underlying molecular processes involved in multicellular trichome development is limited. Here, we studied the dynamic developmental processes involved in glandular and nonglandular multicellular trichome formation in cucumber (Cucumis sativus L.) and divided these processes into five sequential stages. To gain insights into the underlying mechanisms of multicellular trichome formation, we performed a time-course transcriptome analysis using RNA-sequencing analysis. A total of 711 multicellular trichome-related genes were screened and a model for multicellular trichome formation was developed. The transcriptome and co-expression datasets were validated by reverse transcription-quantitative PCR and in situ hybridization. In addition, virus-induced gene silencing analysis revealed that CsHOMEOBOX3 (CsHOX3) and CsbHLH1 are involved in nonglandular trichome elongation and glandular trichome formation, respectively, which corresponds with the transcriptome data. This study presents a transcriptome atlas that provides insights into the molecular processes involved in multicellular trichome formation in cucumber and can be an important resource for future functional studies.


Asunto(s)
Arabidopsis , Cucumis sativus , Arabidopsis/genética , Cucumis sativus/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma/genética , Tricomas/genética
2.
Plant J ; 106(3): 753-765, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33577109

RESUMEN

The fruit trichomes of Cucurbitaceae are widely desired in many Asian countries and have been a key determinant of cucumber (Cucumis sativus L.) cultivar selection for commercial production and breeding. However, our understanding of the initiation and development of cucumber trichomes is still limited. Here, we found that the cucumber TINY BRANCHED HAIR (TBH) gene is preferentially expressed in multicellular trichomes. Overexpression of CsTBH in tbh mutants restored the trichome phenotype and increased the percentage of female flowers, whereas silencing of CsTBH in wild-type plants resulted in stunted trichomes with a lower rate of female flowers. Furthermore, we provide evidence that CsTBH can directly bind to the promoters of cucumber 1-Aminocyclopropane-1-Carboxylate Synthase (CsACS) genes and regulate their expression, which affects multicellular trichome development, ethylene accumulation, and sex expression. Two cucumber acs mutants with different trichome morphology and sex morphs compared with their near-isogenic line further support our findings. Collectively, our study provides new information on the molecular mechanism of CsTBH in regulating multicellular trichome development and sex expression through an ethylene pathway.


Asunto(s)
Cucumis sativus/metabolismo , Etilenos/metabolismo , Genes de Plantas/genética , Redes y Vías Metabólicas , Factores de Transcripción/genética , Tricomas/crecimiento & desarrollo , Cucumis sativus/crecimiento & desarrollo , Genes de Plantas/fisiología , Regiones Promotoras Genéticas , Factores de Transcripción/fisiología , Tricomas/metabolismo
3.
J Exp Bot ; 71(18): 5425-5437, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32490515

RESUMEN

Cucumber is dioecious by nature, having both male and female flowers, and is a model system for unisexual flower development. Knowledge related to male flowering is limited, but it is reported to be regulated by transcription factors and hormone signals. Here, we report functional characterization of the cucumber (Cucumis sativus) GL2-LIKE gene, which encodes a homeodomain leucine zipper (HD-ZIP) IV transcription factor that plays an important role in regulating male flower development. Spatial-temporal expression analyses revealed high-level expression of CsGL2-LIKE in the male flower buds and anthers. CsGL2-LIKE is closely related to AtGL2, which is known to play a key role in trichome development. However, ectopic expression of CsGL2-LIKE in Arabidopsis gl2-8 mutant was unable to rescue the gl2-8 phenotype. Interestingly, the silencing of CsGL2-LIKE delayed male flowering by inhibiting the expression of the florigen gene FT and reduced pollen vigor and seed viability. Protein-protein interaction assays showed that CsGL2-LIKE interacts with the jasmonate ZIM domain protein CsJAZ1 to form a HD-ZIP IV-CsJAZ1 complex. Collectively, our study indicates that CsGL2-LIKE regulates male flowering in cucumber, and reveals a novel function of a HD-ZIP IV transcription factor in regulating male flower development of cucumber.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Fertilidad , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Leucina Zippers , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Exp Bot ; 69(8): 1887-1902, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29438529

RESUMEN

Fruit epidermal features such as the number and size of trichomes or spines are important fruit quality traits in cucumber production. Little is known about the molecular mechanisms underlying fruit spine formation in cucumber. Here, we report functional characterization of the cucumber CsMYB6 gene, which encodes a MIXTA-like MYB transcription factor that plays an important role in regulating fruit trichome development. Spatial-temporal expression analyses revealed high-level expression of CsMYB6 in the epidermis of cucumber ovaries during fruit spine initiation, which was similar to the expression of CsTRY, a homolog of the Arabidopsis TRY gene that also plays a key role in trichome development. Overexpression of CsMYB6 and CsTRY in cucumber and Arabidopsis revealed that CsMYB6 and CsTRY act as negative regulators of trichome initiation in both species, and that CsMYB6 acted upstream of CsTRY in this process. CsMYB6 was found to bind to the three MYB binding sites inside the promoter region of CsTRY, and protein-protein interaction assays suggested that CsTRY also directly interacted with CsMYB6 protein. The results also revealed conserved and divergent roles of CsMYB6 and its Arabidopsis homolog AtMYB106 in trichome development. Collectively, our results reveal a novel mechanism in which the CsMYB6-CsTRY complex negatively regulates fruit trichome formation in cucumber.


Asunto(s)
Cucumis sativus/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Tricomas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Plantas/clasificación , Plantas/genética , Plantas/metabolismo , Factores de Transcripción/genética , Tricomas/metabolismo
5.
Hortic Res ; 9: uhac146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072836

RESUMEN

Fruit glossiness is an important external fruit quality trait for fresh-consumed cucumber fruit, affecting its marketability. Dull fruit appearance is mainly controlled by a single gene, D (for dull fruit) that is dominant to glossy fruit (dd), but the molecular mechanism controlling fruit glossiness is unknown. In the present study, we conducted map-based cloning of the D locus in cucumber and identified a candidate gene (Csa5G577350) that encodes a C2H2-type zinc finger transcription factor, CsDULL. A 4895-bp deletion including the complete loss of CsDULL resulted in glossy fruit. CsDULL is highly expressed in the peel of cucumber fruit, and its expression level is positively correlated with the accumulation of cutin and wax in the peel. Through transcriptome analysis, yeast one-hybrid and dual-luciferase assays, we identified two genes potentially targeted by CsDULL for regulation of cutin and wax biosynthesis/transportation that included CsGPAT4 and CsLTPG1. The possibility that CsDULL controls both fruit glossiness and wart development in cucumber is discussed. The present work advances our understanding of regulatory mechanisms of fruit epidermal traits, and provides a useful tool for molecular breeding to improve external fruit quality in cucumber.

6.
Hortic Res ; 6: 127, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31754434

RESUMEN

Cucumber selective breeding over recent decades has dramatically increased productivity and quality, but the genomic characterizations and changes associated with this breeding history remain unclear. Here, we analyzed the genome resequencing data of 56 artificially selected cucumber inbred lines that exhibit various phenotypes to detect trait-associated sequence variations that reflect breeding improvement. We found that the 56 cucumber lines could be assigned to group 1 and group 2, and the two groups formed a distinctive genetic structure due to the breeding history involving hybridization and selection. Differentially selected regions were identified between group 1 and group 2, with implications for genomic-selection breeding signatures. These regions included known quantitative trait loci or genes that were reported to be associated with agronomic traits. Our results advance knowledge of cucumber genomics, and the 56 selected inbred lines could be good germplasm resources for breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA