Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 324: 138295, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36893867

RESUMEN

Nitrate-driven anaerobic oxidation of methane (AOM), catalyzing by Candidatus Methanoperedens-like archaea, is a new addition in the global CH4 cycle. This AOM process acts as a novel pathway for CH4 emission reduction in freshwater aquatic ecosystems; however, its quantitative importance and regulatory factors in riverine ecosystems are nearly unknown. Here, we examined the spatio-temporal changes of the communities of Methanoperedens-like archaea and nitrate-driven AOM activity in sediment of Wuxijiang River, a mountainous river in China. These archaeal community composition varied significantly among reaches (upper, middle, and lower reaches) and between seasons (winter and summer), but their mcrA gene diversity showed no significant spatial or temporal variations. The copy numbers of Methanoperedens-like archaeal mcrA genes were 1.32 × 105-2.47 × 107 copies g-1 (dry weight), and the activity of nitrate-driven AOM was 0.25-1.73 nmol CH4 g-1 (dry weight) d-1, which could potentially reduce 10.3% of CH4 emissions from rivers. Significant spatio-temporal variations of mcrA gene abundance and nitrate-driven AOM activity were found. Both the gene abundance and activity increased significantly from upper to lower reaches in both seasons, and were significantly higher in sediment collected in summer than in winter. In addition, the variations of Methanoperedens-like archaeal communities and nitrate-driven AOM activity were largely impacted by the sediment temperature, NH4+ and organic carbon contents. Taken together, both time and space scales need to be considered for better evaluating the quantitative importance of nitrate-driven AOM in reducing CH4 emissions from riverine ecosystems.


Asunto(s)
Archaea , Nitratos , Archaea/genética , Archaea/metabolismo , Nitratos/metabolismo , Ecosistema , Ríos , Metano/metabolismo , Anaerobiosis , Oxidación-Reducción
2.
Sci Total Environ ; 851(Pt 2): 158117, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35985598

RESUMEN

Accumulating evidence has demonstrated the wide environmental presence of 6:2 chlorinated polyfluoroalkyl ether sulfonates (6:2 Cl-PFAES) and p-perfluorous nonenoxybenzene sulfonate (PFNOBS). However, data on the bioaccumulation and trophic magnification of these emerging poly- and perfluoroalkyl substances (PFASs) in subtropical marine environment is still limited. In this study, seawater (n = 17), sediment (n = 14), and marine organism (27 species; n = 177) samples were collected from East China Sea, and analyzed them for legacy and emerging PFASs. Besides perfluoroalkyl carboxylates and perfluorooctane sulfonate (PFOS), 6:2 Cl-PFAES was always among the predominant PFASs detected in seawater, sediment, and marine organism. For emerging PFASs, 6:2 Cl-PFAES (mean ± SD, 3.1 ± 0.17), 8:2 Cl-PFAES (3.3 ± 0.35), and PFNOBS (3.3 ± 0.19) had lower bioaccumulation factors (BAF) than PFOS (3.4 ± 0.22) in marine fish. In crab, PFNOBS (3.7 ± 0.33) had a lower biota-sediment accumulation factor (BSAF) than PFOS (3.9 ± 0.45). In snail, among all detected PFASs, PFNOBS (4.0 ± 0.42) had the highest mean log BSAF value. 8:2 Cl-PFAES consistently had a higher log BSAF value than 6:2 Cl-PFAES in snail and crab. Notably, these differences in BAF and BSAF are not significant. Among PFASs, 6:2 Cl-PFAES (2.3; 95 % confidence interval, CI: 1.9-2.6) displayed the highest trophic magnification factor (TMF). PFNOBS had the lowest TMF value (1.8, 95 % CI: 1.4-2.1), but which still indicates its weak biomagnification through the current marine food web. This is the first study reporting the bioaccumulation and biomagnification of PFNOBS in marine organisms, which deepens the understanding of its environmental behavior in the marine ecosystem.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Fluorocarburos/análisis , Bioacumulación , Organismos Acuáticos , Ecosistema , Ácidos Alcanesulfónicos/análisis , Alcanosulfonatos , Cadena Alimentaria , Éteres , China , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 851(Pt 2): 158288, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030855

RESUMEN

Rivers are an important site for methane emissions and reactive nitrogen removal. The process of nitrite-dependent anaerobic methane oxidation (n-damo) links the global carbon cycle and the nitrogen cycle, but its role in methane mitigation and nitrogen removal in rivers is poorly known. In the present study, we investigated the activity, abundance, and community composition of n-damo bacteria in sediment of the upper, middle, and lower reaches of Wuxijiang River (Zhejiang Province, China). The 13CH4 stable isotope experiments showed that the methane oxidation activity of n-damo was 0.11-1.88 nmol CO2 g-1 (dry sediment) d-1, and the activity measured from the middle reaches was significantly higher than that from the remaining regions. It was estimated that 3.27 g CH4 m-2 year-1 and 8.72 g N m-2 year-1 could be consumed via n-damo. Quantitative PCR confirmed the presence of n-damo bacteria, and their 16S rRNA gene abundance varied between 5.45 × 105 and 5.86 × 106 copies g-1 dry sediment. Similarly, the abundance of n-damo bacteria was significantly higher in the middle reaches. High-throughput sequencing showed a high n-damo bacterial diversity, with totally 152 operational taxonomic units being detected at 97 % sequence similarity cut-off. In addition, the n-damo bacterial community composition also varied spatially. The inorganic nitrogen (NH4+, NO2-, NO3-) level was found to be the key environmental factor controlling the n-damo activity and bacterial community composition. Overall, our results showed the spatial variations and environmental regulation of the activity and community structure of n-damo bacteria in river sediment, which expanded our understanding of the quantitative importance of n-damo in both methane oxidation and reactive nitrogen removal in riverine systems.


Asunto(s)
Sedimentos Geológicos , Methanosarcinales , Nitritos , Ríos , Anaerobiosis , Bacterias/genética , Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , Methanosarcinales/metabolismo , Nitritos/metabolismo , Nitrógeno/metabolismo , Dióxido de Nitrógeno/metabolismo , Oxidación-Reducción , Ríos/química , ARN Ribosómico 16S/genética , Análisis Espacial , Sedimentos Geológicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA