Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Inorg Chem ; 63(34): 15915-15923, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39121364

RESUMEN

Carbon emission reduction is an important measure to mitigate the greenhouse effect, which has become a hotspot in global climate change research. To contribute to this, here, we fabricated two Co-based metal-organic frameworks (Co-MOFs), namely, {[Co3(NTB)2(bib)]·(DMA)2·(H2O)4}n (DZU-211) and {[Co3(NTB)2(bmip)]·(DMA)2}n (DZU-212) (H3NTB = 4,4',4″-nitrilotribenzoic acid, bib = 1,4-bis(imidazol-1-yl)-butane, bmip = 1,3-bis(2-methyl-1H-imidazol-1-yl)propane) to realize efficient CO2/N2 separation by dividing coordination spaces into suitable pores with narrow windows. DZU-211 reveals a 3D open porous framework, while DZU-212 exhibits a 3D double-fold interpenetrated structure. The two MOFs both possess large coordination spaces and small open pore sizes, via the bib ligand insertion and framework interpenetration, respectively. Comparatively, DZU-211 reveals superior selective CO2 uptake properties due to its more suitable pore characteristics. Gas sorption experiments show that DZU-211 has a CO2 uptake of 52.6 cm3 g-1 with a high simulated CO2/N2 selectivity of 101.7 (298 K, 1 atm) and a moderate initial adsorption heat of 38.1 kJ mol-1. Moreover, dynamic breakthrough experiments confirm the potential application of DZU-211 as a CO2 separation material from postcombustion flue gases.

2.
Molecules ; 29(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38398663

RESUMEN

A simple strategy was adopted for the preparation of an antimicrobial natural rubber/graphene oxide (NR/GO) composite film modified through the use of zwitterionic polymer brushes. An NR/GO composite film with antibacterial properties was prepared using a water-based solution-casting method. The composited GO was dispersed uniformly in the NR matrix and compensated for mechanical loss in the process of modification. Based on the high bromination activity of α-H in the structure of cis-polyisoprene, the composite films were brominated on the surface through the use of N-bromosuccinimide (NBS) under the irradiation of a 40 W tungsten lamp. Polymerization was carried out on the brominated films using sulfobetaine methacrylate (SBMA) as a monomer via surface-initiated atom transfer radical polymerization (SI-ATRP). The NR/GO composite films modified using polymer brushes (PSBMAs) exhibited 99.99% antimicrobial activity for resistance to Escherichia coli and Staphylococcus aureus. A novel polymer modification strategy for NR composite materials was established effectively, and the enhanced antimicrobial properties expand the application prospects in the medical field.

3.
Macromol Rapid Commun ; 44(20): e2300327, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37595144

RESUMEN

The intelligent response actuators based on bilayer polymer can deform under the stimulation of temperature, humidity, light, and other external environment, which is the focus of research. However, achieving multiple responses, high deformation, and programmability is still one of the challenges for these actuators. Herein, a nondetachable bilayer structure, polylactic acid-polypropylene carbonate/polyvinyl alcohol-polydopamine (PLA-PPC/PVA-PDA) multiresponse programmable actuator is prepared by a simple scraping film method. Using PLA-PPC as the solvent-driven response layer, the effects of length, thickness, shape, and solvent vapor on the deformation of PLA-PPC/PVA-PDA actuators are studied. Among them, the high curvature of the film stimulated by ethyl acetate (EA) solution is 29.85 cm-1 . Using PVA-PDA as the response layer to water molecules and infrared (IR) light, the bilayer film shows excellent curling performance. Moreover, the dynamic processes of human clothing and biomimetic squid under solvent stimulation, the picture rolling motion under water molecule stimulation, the biomimetic flower blooming and merging under the synergistic of water molecules and IR light, and the deformation process of biomimetic mimosa under the competition between water molecules and IR light are simulated, which broadens the road for the development of intelligent driving materials.


Asunto(s)
Poliésteres , Alcohol Polivinílico , Humanos , Alcohol Polivinílico/química , Temperatura , Agua , Solventes
4.
Molecules ; 28(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37513463

RESUMEN

An environmentally friendly pore size-controlled, superhydrophobic polylactic acid (PLA) membrane was successfully prepared by a simpler freeze solidification phase separation method (FSPS) and solution impregnation, which has application prospects in the field of oil-water separation. The pore size and structure of the membrane were adjusted by different solvent ratios and solution impregnation ratios. The PLA-FSPS membrane after solution impregnation (S-PLA-FSPS) had the characteristics of uniform pore size, superhydrophobicity and super lipophilicity, its surface roughness Ra was 338 nm, and the contact angle to water was 151°. The S-PLA-FSPS membrane was used for the oil-water separation. The membrane oil flux reached 16,084 L·m-2·h-1, and the water separation efficiency was 99.7%, which was much higher than that of other oil-water separation materials. In addition, the S-PLA-FSPS membrane could also be applied for the adsorption and removal of oil slicks and underwater heavy oil. The S-PLA-FSPS membrane has great application potential in the field of oil-water separation.

5.
Molecules ; 28(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298895

RESUMEN

This paper presents a highly efficient porous adsorbent PGMA-N prepared through a series of amination reactions between polyglycidyl methacrylate (PGMA) and different polyamines. The obtained polymeric porous materials were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), specific surface area test (BET), and elemental analysis (EA). Thereinto, the PGMA-EDA porous adsorbent exhibited excellent ability to synergistically remove Cu(II) ions and sulfamethoxazole from aqueous solutions. Moreover, we studied the effects of pH, contact time, temperature, and initial concentration of pollutants on the adsorption performance of the adsorbent. The experimental results showed that the adsorption process of Cu(II) followed the pseudo-second-order kinetic model and Langmuir isotherm. The maximum adsorption capacity of PGMA-EDA for Cu(II) ions was 0.794 mmol/g. These results indicate that PGMA-EDA porous adsorbent has great potential for application in treating wastewater coexisting with heavy metals and antibiotics.


Asunto(s)
Cobre , Contaminantes Químicos del Agua , Cobre/química , Agua/química , Espectroscopía Infrarroja por Transformada de Fourier , Sulfametoxazol , Porosidad , Adsorción , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno
6.
Molecules ; 28(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38067550

RESUMEN

The double-layer PVDF-PVC (D-PP/PP) super-hydrophobic composite membrane was prepared by the coating immersion phase separation method to enhance the mechanical properties of the composite membrane. The D-PP/PP super-hydrophobic membrane was prepared using the casting solution concentration of 12 wt% PVDF-PVC composite membrane as basement and 4% casting of PVDF-PVC coating. The contact angle of the D-PP/PP membrane was 150.4 ± 0.3°, and the scanning electron microscope showed that the surface of the D-PP/PP membrane was covered by a cross-linked micro-nano microsphere. The mechanical properties showed that the maximum tensile force of the D-PP/PP composite membrane was 2.34 N, which was 19.4% higher than that of PVDF-PVC (1.96 N). Nano-graphite was added to the coating layer in the experiment. The prepared double-layer PVDF-PVC-nano-graphite/PVDF-PVC (D-PPG/PP) composite membrane reached 153.7 ± 0.5°, the contact angle increasing by 3.3°. The SEM comparison showed that the D-PPG/PP composite membrane had a more obvious micro-nano level microsphere layer. The mechanical properties are also superior. By preparing the D-PP/PP membrane, the mechanical properties of the membrane were improved, and the super-hydrophobic property of the coating was also obtained. At the same time, it was found that adding nano-graphite to the coating layer can better improve the hydrophobic, mechanical, and self-cleaning properties of the D-PP/PP composite membrane.

7.
Molecules ; 28(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36838584

RESUMEN

In this paper, the photocatalytic degradation efficiency of typical antibiotics (norfloxacin (NOR), sulfamethoxazole (SMX) and tetracycline hydrochloride (TCH)) by Ag/CNQDs/g-C3N4 under visible light irradiation was studied. Various strategies were applied to characterize the morphology, structure and photochemical properties of the Ag/CNQDs/g-C3N4 composites. The superior photocatalytic activity of Ag/CNQDs/g-C3N4 was attributed to the wide light response range and the enhancement of interfacial charge transfer. At the same time, the effect of the influence factors (pH, Humic acid (HA) and coexisting ions) on the antibiotics degradation were also investigated. Furthermore, the electron spin resonance (ESR) technology, free radical quenching experiments, LC/MS and DFT theoretical calculations were applied to predict and identify the active groups and intermediates during the photocatalytic degradation process. In addition, Ag/CNQDs/g-C3N4 exhibited the obvious antibacterial effect to Escherichia coli due to the addition of Ag NPs. This study develops a new way for the removal of emerging antibiotic pollution from wastewaters.


Asunto(s)
Antibacterianos , Tetraciclina , Antibacterianos/química , Norfloxacino , Sulfametoxazol , Luz , Catálisis
8.
Inorg Chem ; 59(16): 11728-11735, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799465

RESUMEN

Embedding a functional metal-oxo cluster within the matrix of metal-organic frameworks (MOFs) is a feasible approach for the development of advanced porous materials. Herein, three isoreticular pillar-layered MOFs (Co6-MOF-1-3) based on a unique [Co6(µ3-OH)6] cluster were designed, synthesized, and structurally characterized. For these Co6-MOFs, tuning of the framework backbone was facilitated due to the existence of second ligands, which results in adjustable apertures (8.8 to 13.4 Å) and high Brunauer-Emmett-Teller surfaces (1896-2401 m2 g-1). As the [Co6(µ3-OH)6] cluster has variable valences, these MOFs were then utilized as heterogeneous catalysts for the selective oxidation of styrene and benzyl alcohol, showing high conversion (>90%) and good selectivity. The selectivity of styrene to styrene oxide surpassed 80% and that of benzyl alcohol to benzaldehyde was up to 98%. The calculated TOF values show that the increase of reaction rate is positively correlated with the enlargement of pore sizes in these MOFs. Further, a stability test and cycling experiment proved that these Co6-MOFs have well-observed stability and recyclability.

9.
Angew Chem Int Ed Engl ; 54(20): 5966-70, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25800154

RESUMEN

Metal-organic frameworks (MOFs) are shown to be good examples of a new class of crystalline porous materials for guest encapsulation. Since the encapsulation/release of guest molecules in MOF hosts is a reversible process in nature, how to prevent the leaching of guests from the open pores with minimal and nondestructive modifications of the structure is a critical issue. To address this issue, we herein propose a novel strategy of encapsulating guests by introducing size-matching organic ligands as bolts to lock the pores of the MOFs through deliberately anchoring onto the open metal sites in the pores. Our proposed strategy provides a mechanical way to prevent the leaching of guests and thereby has less dependence on the specific chemical environment of the hosts, thus making it applicable for a wide variety of existing MOFs once the size-matching ligands are employed.

10.
Inorg Chem ; 53(17): 8985-90, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25127434

RESUMEN

Two new zinc MOFs with similar "pillar-layered" framework structures based on 1,1'-biphenyl-2,2',6,6'-tetracarboxylic acid (H4bpta) and two different bipyridine pillar ligands, namely {[Zn4(bpta)2(4-pna)2(H2O)2]·4DMF·3H2O}n (1) and {[Zn2(bpta)(bpy-ea)(H2O)]·2DMF·H2O}n (2) (4-pna = N-(4-pyridyl)isonicotinamide and bpy-ea = 1,2-bis(4-pyridyl)ethane), have been synthesized and investigated with their CO2 adsorption properties. By analysis of the structure properties and the CO2 adsorption performances of these two MOFs, it was found that the introduction of polar acylamide groups via 4-pna resulted in 1 with enhanced CO2 capacity and CO2/CH4 selectivity at low pressure. In contrast, the framework of 2 shows flexible properties originating from the flexibility of the ethanediylidene group in the bpy-ea ligand, which benefits the sieve effect of pores to give higher CO2/CH4 selectivity at a relatively high pressure range.

11.
Eur J Med Chem ; 276: 116644, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971051

RESUMEN

Ion channels are a type of protein channel that play a vital role in numerous physiological functions by facilitating the passage of ions through cell membranes, thereby enabling ion and electrical signal transmission. As a crucial target for drug action, ion channels have been implicated in various diseases. Many natural products from marine organisms, such as fungi, algae, sponges, and sea cucumber, etc. have been found to have activities related to ion channels for decades. These interesting natural product molecules undoubtedly bring good news for the treatment of neurological and cardiovascular diseases. In this review, 92 marine natural products and their synthetic derivatives with ion channel-related activities that were identified during the period 2000-2024 were systematically reviewed. The synthesis and mechanisms of action of selected compounds were also discussed, aiming to offer insights for the development of drugs targeting ion channels.


Asunto(s)
Organismos Acuáticos , Productos Biológicos , Canales Iónicos , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/síntesis química , Canales Iónicos/metabolismo , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/efectos de los fármacos , Animales , Humanos , Estructura Molecular
12.
J Colloid Interface Sci ; 665: 681-692, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552583

RESUMEN

The efficacy of electron-hole separation in a single sonosensitizer and the complexities of the tumor microenvironment (TME) present significant challenges to the effectiveness of sonodynamic therapy (SDT). Designing efficient sonosensitizers to enhance electron-hole separation and alleviate TME resistance is crucial yet challenging. Herein, we introduce a novel Z-scheme heterojunctions (HJs) sonosensitizer using Fe-doped carbon dots (CDs) as auxiliary semiconductors to sensitize cubic Cu2O (Fe-CDs@Cu2O) for the first time. Fe-CDs@Cu2O demonstrated enhanced SDT effects due to improved electron-hole separation. Additionally, the introduction of Fe ions in CDs synergistically enhances Fenton-like reactions with Cu ions in Cu2O, resulting in enhanced chemodynamic therapy (CDT) effects. Moreover, Fe-CDs@Cu2O exhibited rapid glutathione (GSH) depletion, effectively mitigating TME resistance. With high rates of 1O2 and OH generated by Fe-CDs@Cu2O, coupled with strong GSH depletion, single drug injection and ultrasound (US) irradiation effectively eliminate tumors. This innovative heterojunction sonosensitizer offers a promising pathway for clinical anti-tumor treatment.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Carbono/farmacología , Electrones , Glutatión , Iones , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Peróxido de Hidrógeno
13.
RSC Adv ; 14(6): 3748-3756, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38274163

RESUMEN

A practical "grafting-from" strategy is described to grow photochromic polymer brushes bearing spiropyran (SP) functional groups on graphene oxide (GO) surfaces via surface-initiated ring-opening metathesis polymerization (SI-ROMP). The Grubbs II catalyst was fixed on the GO surface, and the norbornene derivatives functionalized using spiropyran were synthesized from this active site via the ROMP method. The results indicated that the spiropyran-modified polymer brushes were obtained on the GO surface in the form of thin films. The solubility of GO modified by spiropyran polymers (GO-SPs) in organic solvents was significantly improved. The GO-SPs exhibited excellent photochromic properties, including fast coloration/decoloration. The modified GO with an isomeric structure was colored in 90 s under ultraviolet irradiation and decolored in 360 s under white light. The fading kinetic rate in the dark was slow and the kinetic attenuation curve followed bi-exponential decay. The GO-SP composite materials took more than 2 h to return to thermodynamically stable forms. The reversible change in the water contact angle reached 8° after continuous cycling with ultraviolet and visible light. GO-SP maintained its photochromic performance and possessed excellent fatigue resistance after more than six successive UV/light cycles. This work describes a practical strategy for the preparation of photochromic polymer brush modified GO composite materials and extends the applications of GO in photochromic materials.

14.
Phys Chem Chem Phys ; 15(15): 5430-42, 2013 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-23463163

RESUMEN

Microporous organic polymers (MOPs), an emerging class of functional porous materials featured with the pure organic component have been widely studied in recent years. These materials have potential uses in areas such as storage, separation, and catalysis. In this Perspective, we focused on the gas storage and separation of MOPs. The targeted design and synthesis of MOPs toward the enhancement of gas capacity and selectivity are discussed. Furthermore, special emphasis is given to the post-synthesis modification of MOPs which have been proved to be effective methods to accurately tune the desired properties.

15.
Molecules ; 18(12): 14496-504, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24287986

RESUMEN

Three new ursane-type triterpenoids, 3α,6α,30-trihydroxy-ursan-28-oic acid (1), 3α,30-dihydroxy-6-oxo-ursan-28-oic acid (2) and 3α,6α,7α,30-tetrahydroxy-ursan-28-oic acid (3), together with one known triterpenoid, betulinic acid (4), one known anthraquinone, 1,7-dihydroxy-2-methylanthraquinone (5), four known phenols, 1,3,5-trimethoxybenzene (6), p-hydroxybenzoic acid (7), syringic acid (8), isovanillin (9), two steroids, sitosterol (10) and daucosterol (11), were isolated from the ethanol extract of the stems of S. merrillii. Their structures were elucidated on the basis of physical and spectral techniques, besides comparison with literature data. Compounds 1-3 showed inhibitory activities against the A549, HEPG2, and B16F10 cell lines.


Asunto(s)
Tallos de la Planta/química , Rubiaceae/química , Triterpenos/química , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Triterpenos/farmacología , Triterpenos/toxicidad
16.
Phytochemistry ; 213: 113779, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37364708

RESUMEN

Under the guidance of MS/MS-based molecular networking, eight odoriferous sesquiterpenes including two undescribed geosmin-type sesquiterpenoid degradations, odoripenoid A (1) and odoripenoid B (2), and two undescribed germacrane-type sesquiterpenoids, odoripenoid C (3) and odoripenoid (4), together with four known related compounds (5-8) were isolated from the EtOAc extract of the marine mesophotic zone sponge-associated Streptomyces sp. NBU3428. All chemical structures including absolute configurations of these compounds were elucidated by means of HRESIMS, NMR, ECD calculations and single-crystal X-ray diffraction experiments. Compounds 1 and 2 represent the rarely geosmin-related metabolites directly as natural products from actinomycetes. The isolated compounds (1-8) were assayed in a range of biological activities. Compounds 1 and 2 showed anti-Candida albicans activity with MIC values of 16 and 32 µg/mL, respectively, representing potential antifungal agents.


Asunto(s)
Sesquiterpenos , Streptomyces , Antifúngicos , Streptomyces/química , Streptomyces/metabolismo , Espectrometría de Masas en Tándem , Sesquiterpenos/química , Estructura Molecular
17.
Dalton Trans ; 52(48): 18194-18205, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38009578

RESUMEN

Developing eco-friendly and low-cost advanced anode materials, such as Fe2O3 and Mn3O4, is fundamental to improve the electrochemical performance of lithium-ion batteries (LIBs). The rational engineering of the microstructure of Fe2O3 and Mn3O4 to endow it with one-dimensionally and hierarchically porous architecture is a feasible way to further improve and optimize the electrochemical performance of the anode materials. Herein, we demonstrate a facile strategy to prepare nanotubular Fe2O3 and Mn3O4 as advanced anode materials for high-performance LIBs. By combining the merits of the one-dimensionally nanotubular morphology and hierarchically porous structure, limitations in the lithiation activity of Mn3O4 and Fe2O3 anode materials, such as low electrical conductivity, large volume expansion, and sluggish lithium-ion diffusion within the materials, have been effectively overcome. When used as anode materials, t-Fe2O3 and t-Mn3O4 exhibited outstanding electrochemical performances, including a high reversible discharge capacity (859.7 and 901.4 mA h g-1 for t-Fe2O3 and t-Mn3O4, respectively), excellent rate performance, and ultra-stable cycling stability. Such superior electrochemical performances proved the exceptional potential of the materials for the real-world application in LIBs.

18.
ACS Appl Mater Interfaces ; 15(3): 4208-4215, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36625524

RESUMEN

Metal-organic frameworks (MOFs) have been proven promising in addressing many critical issues related to gas separation and purification. However, it remains a great challenge to optimize the pore environment of MOFs for purification of specific gas mixtures. Herein, we report the rational construction of three isostructural microporous MOFs with the 4,4',4"-tricarboxyltriphenylamine (H3TCA) ligand, unusual hexaprismane Ni6O6 cluster, and functionalized pyrazine pillars [PYZ-x, x = -H (DZU-10), -NH2 (DZU-11), and -OH (DZU-12)], where the building blocks of Ni6O6 clusters and huddled pyrazine pillars are reported in porous MOFs for the first time. These building blocks have enabled the resulting materials to exhibit good chemical stability and variable pore chemistry, which thus contribute to distinct performances toward C2H2/CO2 separation. Both single-component isotherms and dynamic column breakthrough experiments demonstrate that DZU-11 with the PYZ-NH2 pillar outperforms its hydrogen and hydroxy analogues. Density functional theory calculations reveal that the higher C2H2 affinity of DZU-11 over CO2 is attributed to multiple electrostatic interactions between C2H2 and the framework, including strong C≡C···H-N (2.80 Å) interactions. This work highlights the potential of pore environment optimization to construct smart MOF adsorbents for some challenging gas separations.

19.
Zhong Yao Cai ; 35(8): 1263-7, 2012 Aug.
Artículo en Zh | MEDLINE | ID: mdl-23320360

RESUMEN

OBJECTIVE: To study the chemical constituents, antimicrobial activity and antitumor activity of the essential oil from Zanthoxylum avicennae. METHODS: The essential oil from the leaves of Zanthoxylum avicennae was extracted by steam distillation. The components of the essential oil were separated and identified by GC-MS. RESULTS: 72 components were identified and accounted for 98.15% of the all peak area. The essential oil exhibited strong antitumor activity against K-562 human tumor cell lines with IC50 of 1.76 microg/mL. It also exhibited moderate antimicrobial activity against three bacteria. CONCLUSION: The essential oil of Zanthoxylum avicennae contains various active constituents. This result provides scientific reference for the pharmacological further research of Zanthoxylum avicennae.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos Fitogénicos/farmacología , Aceites Volátiles/análisis , Aceites Volátiles/farmacología , Hojas de la Planta/química , Zanthoxylum/química , Monoterpenos Acíclicos , Antiinfecciosos/química , Antineoplásicos Fitogénicos/química , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Cromatografía de Gases y Espectrometría de Masas , Humanos , Concentración 50 Inhibidora , Monoterpenos/análisis , Monoterpenos/farmacología , Aceites Volátiles/química , Sesquiterpenos Policíclicos , Sesquiterpenos/análisis , Sesquiterpenos/farmacología
20.
Membranes (Basel) ; 12(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35448331

RESUMEN

A complex-function fluid controller placed in front of a membrane module was used to control the velocity change with feed fluid and reduce membrane fouling. Using humic acid as the simulated pollutant, the effects of the square wave function, sine function, reciprocal function, and power function feeding on the membrane flux were investigated. For sine function feeding, the membrane-specific flux was the largest and was maintained above 0.85 under the intermittent frequency of 9 s. Compared with the final membrane-specific flux with steady-flow feeding of 0.55, functional feeding could significantly reduce membrane fouling. SEM results showed that sine feeding led to slight contamination on the membrane surface. Furthermore, the Computational Fluid Dynamics (CFD) simulation results showed that the shear force of sine function feeding was about three times that of the steady flow (6 × 105 N). Compared with steady feeding, functional feeding could significantly improve the shear force on the membrane surface and reduce membrane fouling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA