Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(14): e2207581, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36651007

RESUMEN

Overall photocatalytic conversion of CO2 and pure H2 O driven by solar irradiation into methanol provides a sustainable approach for extraterrestrial synthesis. However, few photocatalysts exhibit efficient production of CH3 OH. Here, BiOBr nanosheets supporting atomic Cu catalysts for CO2 reduction are reported. The investigation of charge dynamics demonstrates a strong built-in electric field established by isolated Cu sites as electron traps to facilitate charge transfer and stabilize charge carriers. As result, the catalysts exhibit a substantially high catalytic performance with methanol productivity of 627.66 µmol gcatal -1 h-1 and selectivity of ≈90% with an apparent quantum efficiency of 12.23%. Mechanism studies reveal that the high selectivity of methanol can be ascribed to energy-favorable hydrogenation of *CO intermediate giving rise to *CHO. The unfavorable adsorption on Cu1 @BiOBr prevents methanol from being oxidized by photogenerated holes. This work highlights the great potential of single-atom photocatalysts in chemical transformation and energy storage reactions.

2.
Angew Chem Int Ed Engl ; 62(40): e202305964, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37277990

RESUMEN

The pursuit of high metal utilization in heterogeneous catalysis has triggered the burgeoning interest of various atomically dispersed catalysts. Our aim in this review is to assess key recent findings in the synthesis, characterization, structure-property relationship and computational studies of dual-atom catalysts (DACs), which cover the full spectrum of applications in thermocatalysis, electrocatalysis and photocatalysis. In particular, combination of qualitative and quantitative characterization with cooperation with DFT insights, synergies and superiorities of DACs compare to counterparts, high-throughput catalyst exploration and screening with machine-learning algorithms are highlighted. Undoubtably, it would be wise to expect more fascinating developments in the field of DACs as tunable catalysts.

3.
Small ; 18(11): e2105741, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35038227

RESUMEN

Catalysts made of in situ exsolved metal nanoparticles often demonstrate promising activity and high stability in many applications. However, the traditional approach is limited by perovskites as prevailing precursor and requires high temperature typically above 900 K. Here, with the guidance of theoretical calculation, an unprecedented and substantially facile technique is demonstrated for Cu nanoparticles exsolved from interstitially Cu cations doped nickel-based hydroxide, which is accomplished swiftly at room temperature and results in metal nanoparticles with a quasi-uniform size of 4 nm, delivering an exceptional CO faradaic efficiency of 95.6% for the electrochemical reduction of CO2 with a notable durability. This design principle is further proven to be generally applicable to other metals and foregrounded for guiding the development of advanced catalytic materials.

4.
Appl Biochem Biotechnol ; 196(1): 68-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37099125

RESUMEN

Alginate lyase can degrade alginate into oligosaccharides through ß-elimination for various biological, biorefinery, and agricultural purposes. Here, we report a novel PL7 family exolytic alginate lyase VwAlg7A from marine bacteria Vibrio sp. W13 and achieve the heterologous expression in E. coli BL21 (DE3). VwAlg7A is 348aa with a calculated molecular weight of 36 kDa, containing an alginate lyase 2 domain. VwAlg7A exhibits specificity towards poly-guluronate. The optimal temperature and pH of VwAlg7A are 30 °C and 7.0, respectively. The activity of VwAlg7A can be significantly inhibited by the Ni2+, Zn2+, and NaCl. The Km and Vmax of VwAlg7A are 36.9 mg/ml and 395.6 µM/min, respectively. The ESI and HPAEC-PAD results indicate that VwAlg7A cleaves the sugar bond in an exolytic mode. Based on the molecular docking and mutagenesis results, we further confirmed that R98, H169, and Y303 are important catalytic residues.


Asunto(s)
Escherichia coli , Sulfonamidas , Vibrio , Secuencia de Aminoácidos , Simulación del Acoplamiento Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Polisacárido Liasas/química , Vibrio/genética , Alginatos/metabolismo , Especificidad por Sustrato , Concentración de Iones de Hidrógeno , Proteínas Bacterianas/química
5.
Acta Biomater ; 148: 61-72, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35728789

RESUMEN

Peptides are more versatile than small molecule drugs, but their specific bioaffinities are usually lower than their original native proteins because of the loss of preferred conformations. To overcome this key obstacle, we demonstrated a hydrogen bond-induced conformational constraint method to enhance the specific bioaffinities of peptides to achieve a high success rate by using linear RGD-containing peptides as a model of bioactive peptides. By performing molecular simulation, we found that the chemically immobilized linear CRGDS via cysteine (C) at the N-terminus on zwitterionic PAMAM G-5 can not only spontaneously restore the natural conformation of the RGD segment through the assistance of the dynamic hydrogen bond from serine (S) at the C-terminus of the peptide, but it can also narrow the distribution of all possible conformations. Consequently, the conjugates showed comparable or even better high affinity than native proteins without the use of conventional, labor-intensive, synthesis-based structure search methods to construct a binding conformation. In addition, the conjugates showed globular protein-like characteristics chemically, physically, and physiologically. They exhibited not only high efficacy and biosafety both in vitro and in vivo, but they also showed extremely high thermostability even upon boiling in a solution. This approach offers great design flexibility for reviving functional peptides without impairing their high specific affinity for their targets. STATEMENT OF SIGNIFICANCE: In this work, we developed a swift approach to spontaneously restore the natural conformation of a linear peptide from a nature protein and thus enhance its specific bioaffinity instead of constructing a binding conformation by the labor-intensive, synthesis-based structure search method. In details, our new approach involves dynamically constraining the linear peptide on a zwitterionic PAMAM G-5 surface by a combination of chemical bonding at one terminus and dynamic hydrogen bonding at the other terminus of the linear peptide. The zwitterionic background offers abundant interaction sites for hydrogen bonding as well as resistance to nonspecific interactions. This approach fully restores the specific bioaffinity of RGD segments on a zwitterionic PAMAM G-5 through only one conjugation point at the C-terminus of the peptide. Moreover, the bioaffinity of all three types of RGD-containing peptides is successfully restored, which indicates the high rate of success of this approach in affinity restoring.


Asunto(s)
Dendrímeros , Cisteína/química , Dendrímeros/química , Enlace de Hidrógeno , Oligopéptidos/química , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA