Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 36(6): 2253-2271, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38416876

RESUMEN

Brassinosteroids (BRs) are widely used as plant growth regulators in modern agriculture. Understanding how BRs regulate nutrient signaling is crucial for reducing fertilizer usage. Here we elucidate that the central BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 (GSK2) interacts directly with and phosphorylates PHOSPHATE STARVATION RESPONSE2 (OsPHR2), the key regulator of phosphate (Pi) signaling, to suppress its transcription factor activity in rice (Oryza sativa). We identify a critical phosphorylation site at serine residue S269 of OsPHR2 and demonstrate that phosphorylation by GSK2 or phosphor-mimic mutation of S269 substantially impairs the DNA-binding activity of OsPHR2, and thus diminishes expression of OsPHR2-induced genes and reduces Pi levels. Like BRs, Pi starvation noticeably induces GSK2 instability. We further show that this site-specific phosphorylation event is conserved in Arabidopsis (Arabidopsis thaliana), but varies among the PHR-family members, being present only in most land plants. These results unveil a distinctive post-transcriptional regulatory mechanism in Pi signaling by which BRs promote Pi acquisition, with a potential contribution to the environmental adaptability of plants during their evolution.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/genética , Brasinoesteroides/metabolismo , ADN de Plantas/metabolismo , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/metabolismo , Oryza/genética , Fosfatos/metabolismo , Fosforilación , Proteínas de Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Plant Cell ; 32(7): 2292-2306, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32409321

RESUMEN

Maintaining stable, high yields under fluctuating environmental conditions is a long-standing goal of crop improvement but is challenging due to internal trade-off mechanisms, which are poorly understood. Here, we identify ARGONAUTE2 (AGO2) as a candidate target for achieving this goal in rice (Oryza sativa). Overexpressing AGO2 led to a simultaneous increase in salt tolerance and grain length. These benefits were achieved via the activation of BIG GRAIN3 (BG3), encoding a purine permease potentially involved in cytokinin transport. AGO2 can become enriched on the BG3 locus and alter its histone methylation level, thus promoting BG3 expression. Cytokinin levels decreased in shoots but increased in roots of AGO2-overexpressing plants. While bg3 knockout mutants were hypersensitive to salt stress, plants overexpressing BG3 showed strong salt tolerance and large grains. The knockout of BG3 significantly reduced grain length and salt tolerance in AGO2-overexpressing plants. Both genes were transcriptionally suppressed by salt treatment. Salt treatment markedly increased cytokinin levels in roots but decreased them in shoots, resulting in a hormone distribution pattern similar to that in AGO2-overexpressing plants. These findings highlight the critical roles of the spatial distribution of cytokinins in both stress responses and grain development. Therefore, optimizing cytokinin distribution represents a promising strategy for improving both grain yield and stress tolerance in rice.


Asunto(s)
Citocininas/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Tolerancia a la Sal/fisiología , Semillas/fisiología , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Mutación , Oryza/efectos de los fármacos , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
3.
Anal Chem ; 94(16): 6281-6288, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35427115

RESUMEN

Herein, a sensitivity enhancement technique for laser-induced breakdown spectroscopy (LIBS) by atmospheric pressure glow discharge was proposed, while cylindrical confinement was used for further improvement. A comprehensive parameters evaluation of the proposed technique was carried out (at the laser energy of 30 mJ), with the emission intensities of Ti, Ni, Cu, Y, Ba, La, Eu, Yb, and Lu in soil samples enhanced by 17.8, 5.7, 5.2, 10.5, 7.4, 6.1, 8.7, 7.8, and 8.7 times, respectively. The limits of detection (LODs) of Ti, Ni, Cu, Y, Ba, La, Eu, Yb, and Lu were significantly decreased from 246, 356, 133, 158, 10, 175, 102, 105, and 262 mg kg-1 to 43, 67, 31, 20, 2, 35, 21, 18, and 49 mg kg-1, respectively. In addition, the possible signal enhancement mechanism was preliminarily explained by studying the plasma electron temperature and density with and without the proposed sensitization strategy.


Asunto(s)
Presión Atmosférica , Rayos Láser , Límite de Detección , Análisis Espectral/métodos
4.
Plant Physiol ; 187(4): 2563-2576, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618079

RESUMEN

Brassinosteroids (BRs) regulate various agronomic traits such as plant height, leaf angle, and grain size in rice (Oryza sativa L.); thus, BR signaling components are promising targets for molecular rational design. However, genetic materials for BR-signaling genes or family members remain limited in rice. Here, by genome editing using clustered regularly interspaced short palindromic repeats (CRSPR)/Cas9 tools, we generated a panel of single, double, triple, or quadruple mutants within three BR signaling gene families, including GSK3/SHAGGY-LIKE KINASE1 (GSK1)-GSK4, BRASSINAZOLE-RESISTANT1 (OsBZR1)-OsBZR4, and protein phosphatases with kelch-like (PPKL)1-PPKL3, under the same background (Zhonghua11, japonica). The high-order mutants were produced by either simultaneously targeting multiple sites on different genes of one family (GSKs and PPKLs) or targeting the overlapping sequences of family members (OsBZRs). The mutants exhibited a diversity of plant height, leaf angle, and grain morphology. Comparison analysis of the phenotypes together with BR sensitivity tests suggested the existence of functional redundancy, differentiation, or dominancy among the members within each family. In addition, we generated a set of transgenic plants overexpressing GSK2, OsBZR1/2, and PPKL2, respectively, in wild-type or activated forms with fusion of different tags, and also verified the protein response to BR application. Collectively, these plants greatly enriched the diversity of important agronomic traits in rice. We propose that editing of BR-related family genes could be a feasible approach for screening of desired plants to meet different requirements. Release of these materials as well as the related information also provides valuable resources for further BR research and utilization.


Asunto(s)
Brasinoesteroides/metabolismo , Edición Génica , Genoma de Planta , Oryza/genética , Proteínas de Plantas/metabolismo , Transducción de Señal
5.
Toxicol Appl Pharmacol ; 452: 116194, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35961412

RESUMEN

The health risks of Decabromodiphenyl ethane (DBDPE) with its cardiovascular toxicity, liver toxicity and cytotoxicity had been generally acknowledged. However, the influence on gut microbiome and short-chain fatty acids (SCFAs) metabolism caused by DBDPE exposure remained unknown. In this study, three exposure groups (5, 50, 500 mg/L) and control group were used to investigate the effect of DBDPE by using simulator of the human intestinal microbial ecosystem (SHIME). 16S rRNA gene high-throughput sequencing illustrated that high dose DBDPE exposure increased the α-diversity of gut microbiota, while reduced the abundance of Firmicutes and Proteobacteria. In addition, the low dose (5 mg/L) DBDPE inhibited the increasing of SCFAs, but the medium and high dose (50 and 500 mg/L) DBDPE promoted the advancement, especially in ascending colon. Notably, DBDPE exposure lead a similar changing of acetic acid and butyric acid contents in different sections of the colon. This study confirmed the alternation of composition and metabolic function in gut microbial community due to DBDPE exposure, indicating an intestinal damage and appealing for more attention concentrated on the health effects of DBDPE exposure.


Asunto(s)
Retardadores de Llama , Microbioma Gastrointestinal , Bromobencenos , Ecosistema , Retardadores de Llama/toxicidad , Humanos , ARN Ribosómico 16S/genética
6.
Arch Microbiol ; 204(8): 538, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35916974

RESUMEN

A Gram-positive, non-motile, non-spore-forming and short rod-shaped actinomycete strain, designated GA224T, was isolated from electronic waste-associated bioaerosols. The optimal growth conditions for this isolate, a facultatively anaerobic bacterium, were 37 °C and pH 8.0. The cell-wall peptidoglycan type was B2γ, with 2,4-diaminobutyric acid (DAB) as the diamino acids, while the major menaquinone was MK-12. The polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipids, unidentified glycolipids and an unidentified lipid. The major cellular fatty acids were anteiso-C15:0 and iso-C16:0. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GA224T fell within the genus Microcella. The draft genome of strain GA224T comprised 2,495,189 bp with a G + C content of 72.2 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain GA224T and the type strain of the type species of Microcella species were lower than 95% and 70%, respectively. Based on the phenotypic, chemotaxonomic and genomic data, strain GA224T represents a novel species, for which the name Microcella aerolata sp. nov. is proposed, with GA224T as the type strain (= GDMCC 1.2165 T = JCM 34462 T).


Asunto(s)
Actinomycetales , Residuos Electrónicos , Actinomycetales/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
7.
Pharmacol Res ; 175: 106027, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890774

RESUMEN

Cardiac arrhythmia occurs frequently worldwide, and in severe cases can be fatal. Mitochondria are the power plants of cardiomyocytes. In recent studies, mitochondria under certain stimuli produced excessive reactive oxygen species (ROS), which affect the normal function of cardiomyocytes through ion channels and related proteins. Mitochondrial oxidative stress (MOS) plays a key role in diseases with multifactorial etiopathogenesis, such as arrhythmia; MOS can lead to arrhythmias such as atrial fibrillation and ventricular tachycardia. This review discusses the mechanisms of arrhythmias caused by MOS, particularly of ROS produced by mitochondria. MOS can cause arrhythmias by affecting the activities of Ca2+-related proteins, the mitochondrial permeability transition pore protein, connexin 43, hyperpolarization-activated cyclic nucleotide-gated potassium channel 4, and ion channels. Based on these mechanisms, we discuss possible new treatments for arrhythmia. Targeted treatments focusing on mitochondria may reduce the progression of arrhythmias, as well as the occurrence of severe arrhythmias, and may be effective for personalized disease prevention.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Uniones Comunicantes/metabolismo , Humanos , Canales Iónicos/genética
8.
Int J Syst Evol Microbiol ; 72(11)2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36748705

RESUMEN

A novel Gram-stain-negative, non-motile, spherical-shaped and facultatively anaerobic bacterial strain, designated as GB24T was isolated from bioaerosols of an E-waste dismantling site in Guiyu, Guangdong Province, South PR China. Growth occurred at 15-40 °C (optimum 37 °C), pH 5.5-9.5 (optimum 7.0), and up to 0.5 % NaCl (w/v) under aerobic conditions, GB24T was characterized taxonomically and phylogenetically. The sole isoprenoid quinone detected was ubiquinone-10 (Q-10). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, three unidentified glycolipids, one unidentified phospholipid, and one unidentified aminolipid. Carotenoid pigments were produced. The major cellular fatty acids (> 10 % of total fatty acids) were C17 : 1ω6c (51.5 %) and summed feature 8 (13.5 %, comprising C18 : 1ω7c and/or C18 : 1ω6c). Phylogenetic analysis based on 16S rRNA gene sequence and draft genome grouped strain GB24T into the genus Roseicella. GB24T was most closely related to Roseicella frigidaeris DB1506T with 97.5 % 16S rRNA gene sequence similarity. The draft genome of GB24T comprised 6 153 170 bp with a DNA G+C content of 71.5 %. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values between GB24T and DB1506T were 83.2 % (Ortho ANI), 83.3 % [ANI by blast (ANIb)] and 27.0 %, respectively. Further genomic analysis of GB24T revealed the secondary metabolite clusters of terpene and phosphonate, which indicate the capacity for malleobactin (14 %) and phosphinothricin (6 %) tripeptide production. On the basis of the genotypic, chemotaxonomic and phenotypic results, GB24T represents a novel species, for which the name Roseicella aerolata sp. nov. is proposed. The type strain of Roseicella aerolata is GB24T (= GDMCC 1.2169T = JCM 34449T).


Asunto(s)
Residuos Electrónicos , Ácidos Grasos , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Fosfolípidos/química , Ubiquinona/química
9.
J Integr Plant Biol ; 64(8): 1614-1630, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35766344

RESUMEN

Japonica/geng and indica/xian are two major rice (Oryza sativa) subspecies with multiple divergent traits, but how these traits are related and interact within each subspecies remains elusive. Brassinosteroids (BRs) are a class of steroid phytohormones that modulate many important agronomic traits in rice. Here, using different physiological assays, we revealed that japonica rice exhibits an overall lower BR sensitivity than indica. Extensive screening of BR signaling genes led to the identification of a set of genes distributed throughout the primary BR signaling pathway with divergent polymorphisms. Among these, we demonstrate that the C38/T variant in BR Signaling Kinase2 (OsBSK2), causing the amino acid change P13L, plays a central role in mediating differential BR signaling in japonica and indica rice. OsBSK2L13 in indica plays a greater role in BR signaling than OsBSK2P13 in japonica by affecting the auto-binding and protein accumulation of OsBSK2. Finally, we determined that OsBSK2 is involved in a number of divergent traits in japonica relative to indica rice, including grain shape, tiller number, cold adaptation, and nitrogen-use efficiency. Our study suggests that the natural variation in OsBSK2 plays a key role in the divergence of BR signaling, which underlies multiple divergent traits between japonica and indica.


Asunto(s)
Oryza , Brasinoesteroides/metabolismo , Oryza/metabolismo , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo
10.
J Infect Dis ; 224(12): 2148-2159, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34013337

RESUMEN

BACKGROUND: Brucella species are Gram-negative intracellular bacteria that causes severe inflammatory diseases in animals and humans. Two major lipoproteins (L19 and L16) of Brucella outer membrane proteins were studied to explore the association with inflammatory response of human monocytes (THP-1). METHODS: Activated THP-1 cells induced with recombinant L19 and L16 were analyzed in comparison with unlipidated forms (U19 and U16) and lipopolysaccharide (LPS) of Brucella melitensis, respectively. RESULTS: Secretion of inflammatory factors tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß was significantly increased from L19, L16, or both stimulated THP-1 cells. High secretion of IL-18 was detected only from L19-induced cells. Signaling of those cytokine responses was identified mainly through the P38-mitogen-activated protein kinase pathway, and signaling of L19-induced IL-1ß response partly occurred via necrosis factor-κB. While exploring different forms of IL-18, we found that L19-induced production of active IL-18 (18 kD) occurred through upregulating NLRP3 and activating caspase-1, whereas L16-induced production of inactive IL-18 fragments (15 kD and 16 kD) occurred through activating caspase-8/3. We also found that L19 upregulated phosphorylation of XIAP for inhibiting caspase-3 activity to cleave IL-18, whereas L16 activated caspase-3 for producing GSDME-N and leading to pyroptosis of THP-1 cells. CONCLUSIONS: Brucella L19 and L16 differentially induce IL-18 response or pyroptosis in THP-1 cells, respectively.


Asunto(s)
Brucella/inmunología , Inflamación/prevención & control , Interleucina-18 , Lipoproteínas , Piroptosis , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Brucella/genética , Caspasa 3 , Humanos , Inflamación/inmunología , Mediadores de Inflamación , Interleucina-1beta , Lipopolisacáridos , Monocitos
11.
Plant J ; 102(6): 1187-1201, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31950543

RESUMEN

Brassinosteroids (BRs) are a class of phytohormones that modulate several important agronomic traits in rice (Oryza sativa). GSK2 is one of the critical suppressors of BR signalling and targets transcription factors such as OsBZR1 and DLT to regulate BR responses. Here, we identified OFP3 (OVATE FAMILY PROTEIN 3) as an interactor of both GSK2 and DLT by yeast-two-hybrid screening and demonstrated that OFP3 plays a distinctly negative role in BR responses. While knockout of OFP3 promoted rice seedling growth, overexpression of OFP3 led to strong BR insensitivity, which resulted in reduced plant height, leaf angle, and grain size. Interestingly, both BR biosynthetic and signalling genes had decreased expression in the overexpression plants. OFP3 overexpression also enhanced the phenotypes of BR-deficient mutants, but largely suppressed those of BR-enhanced plants. Moreover, treatment with either BR or bikinin, a GSK3-like kinase inhibitor, induced OFP3 depletion, whereas GSK2 or brassinazole, a BR synthesis inhibitor, promoted OFP3 accumulation. Furthermore, OFP3 exhibited transcription repressor activity and was able to interact with itself as well as additional BR-related components, including OFP1, OSH1, OSH15, OsBZR1, and GF14c. Importantly, GSK2 can phosphorylate OFP3 and enhance these interactions. We propose that OFP3, as a suppressor of both BR synthesis and signalling but stabilized by GSK2, incorporates into a transcription factor complex to facilitate BR signalling control, which is critical for the proper development of various tissues.


Asunto(s)
Brasinoesteroides/metabolismo , Oryza/metabolismo , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Factores de Transcripción/metabolismo
12.
Ecotoxicology ; 30(7): 1325-1332, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33188492

RESUMEN

Many organic pollutants attract public health concern due to their genotoxicity. To investigate the genotoxicity of organic matter in surface water of the Pearl River Delta (PRD). Organic substances of 24 samples (dry and wet season) from North River, West River and East River were extracted from 60 L source water by XAD-2 macroporous resin. DNA damage effect of organic extracts was tested in human derived liver cells (HL-7702), using single cell gel electrophoresis (SCGE) assay. The results showed that 100% organic extracts (24/24) could induce DNA damage in HL-7702 cells when the concentration was above 1.0 L surface water/ml culture, no significant difference of DNA damage between dry and wet seasons was observed. The organic substance-induced DNA damage in HL-7702 cells was significantly (P < 0.05) correlated with the contents of Dissolved Organic Carbon in both seasons and Total Suspended Solids in dry season. In conclusion, organic extracts induced genetic damage in HL-7702 cells, indicating potential genotoxicity of organic pollutants of surface water from PRD, South China.


Asunto(s)
Daño del ADN , Ríos , Contaminantes Químicos del Agua , Línea Celular , China , Monitoreo del Ambiente , Humanos , Hígado/química , Estaciones del Año , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
13.
Arch Microbiol ; 202(9): 2373-2378, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32583126

RESUMEN

A Gram-positive, endospore-forming, rod-shaped bacterium with a single flagellum, and a motile strain, designated CX253, was isolated from bioaerosols. The isolate is facultatively anaerobic, is able to grow at 25-45 â„ƒ (optimum 37 â„ƒ) and pH 6.5-10.0 (optimum 7.5), and can tolerate up to 5.0% NaCl (w/v) under aerobic conditions. The diagnostic diamino acid in the cell wall of strain CX253T is meso-diaminopimelic acid, while major isoprenoid quinone is menaquinone 6 (MK-6) along with a smaller amount of MK-7 (20%). The polar lipid profile is composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phospholipids and glycolipids. The major cellular fatty acid is iso-C15:0 and anteiso-C15:0. Phylogenetic analysis based on 16S rRNA gene and genome sequence grouped strain CX253T into the genus Bacillus. The strain was most closely related to Bacillus thermotolerans CCTCC AB 2012108 T by comparison of 16S rRNA gene sequence (97.2% similarity) and to Bacillus wudalianchiensis CCTCC AB 2015266 T by comparison of gyrB gene sequence (80.1% similarity). The draft genome of strain CX253T comprised 3,929,195 bp with a G + C content of 43.3 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain CX253T and phylogenetically related Bacillus species were lower than 95% and 70%, respectively. Thus, the polyphasic evidence generated through phenotypic, chemotaxonomic and genomic methods confirmed that strain CX253T (= GDMCC 1.1608 T = KACC 21318 T) was a novel species of the genus Bacillus, for which the name Bacillus aerolatus sp. nov. is proposed.


Asunto(s)
Aerosoles , Bacillus/clasificación , Microbiología Ambiental , Bacillaceae/genética , Bacillus/genética , Bacillus/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , Ácido Diaminopimélico/análisis , Ácidos Grasos/análisis , Glucolípidos/análisis , Hibridación de Ácido Nucleico , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Especificidad de la Especie
14.
J Integr Plant Biol ; 61(5): 581-597, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30267474

RESUMEN

Grain size is an important agronomic trait affecting grain yield, but the underlying molecular mechanisms remain to be elucidated. Here, we isolated a dominant mutant, big grain3 (bg3-D), which exhibits a remarkable increase of grain size caused by activation of the PURINE PERMEASE gene, OsPUP4. BG3/OsPUP4 is predominantly expressed in vascular tissues and is specifically suppressed by exogenous cytokinin application. Hormone profiling revealed that the distribution of different cytokinin forms, in roots and shoots of the bg3-D mutant, is altered. Quantitative reverse transcription-PCR (qRT-PCR) analysis indicated that expression of rice cytokinin type-A RESPONSE REGULATOR (OsRR) genes is enhanced in the roots of the bg3-D mutant. These results suggest that OsPUP4 might contribute to the long-distance transport of cytokinin, by reinforcing cytokinin loading into vascular bundle cells. Furthermore, plants overexpressing OsPUP7, the closest homolog of OsPUP4, also exhibited a similar phenotype to the bg3-D mutant. Interestingly, subcellular localization demonstrated that OsPUP4 was localized on the plasma membrane, whereas OsPUP7 was localized to the endoplasmic reticulum. Based on these findings, we propose that OsPUP4 and OsPUP7 function in a linear pathway to direct cytokinin cell-to-cell transport, affecting both its long-distance movement and local allocation.


Asunto(s)
Citocininas/metabolismo , Proteínas de Transporte de Nucleobases/metabolismo , Oryza/enzimología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Transporte de Nucleobases/genética , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
15.
Acta Pharmacol Sin ; 39(6): 952-960, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29417948

RESUMEN

Danshen (Salvia miltiorrhiza) preparations such as Danhong injection, Danshen injection, Salvianolate injection, compound Danshen injection and Sodium Tanshinone IIA Sulfonate (STS) injection are widely used in China to treat stable angina (angina pectoris) caused by coronary heart disease. In this study we compared the network pharmacological mechanisms of the 5 Danshen preparations. Following a literature search performed in PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI) database, China Biology Medicine (CBM) database, China Conference Paper Database, Wanfang Database, VIP Database and Conference Proceedings Citation Index (through January 2015), 444 randomized controlled trial publications detailing the use of the 5 Danshen-based injections for treating stable angina were identified, and their combined data were analyzed using a network meta-analysis. All of the 5 Danshen-based preparations were effective in treating stable angina with clinical improvement rates of 72.4%-91.6% and electrocardiogram (ECG) improvement rates of 54.5%-71.6%. According to both clinical improvement and ECG improvement, the 5 Danshen-based preparations were ranked as follows: Danhong injection > Salvianolate injection > STS injection > compound Danshen injection > Danshen injection. There were no significant differences among the safety profiles of the 5 Danshen preparations. The meta-analysis results were further examined using a network pharmacology approach and functional enrichment analysis, which revealed that Danshen and Danhong injections affected 4 and 15 signaling pathways, respectively, and that the 4 signaling pathways affected by Danshen were a subset of those influenced by Danhong. Therefore, Danhong injection affected some unique signaling pathways that might regulate lipoprotein metabolism, oxidation, and inflammation, and protect vascular endothelia, reflecting the multi-component and multi-target characteristics of this traditional formula and its strengths in treating complex diseases.


Asunto(s)
Angina Estable/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China/métodos , Salvia miltiorrhiza , Transducción de Señal/efectos de los fármacos , Biología de Sistemas/métodos , Adulto , Anciano , Anciano de 80 o más Años , Angina Estable/diagnóstico , Angina Estable/metabolismo , Angina Estable/fisiopatología , Medicamentos Herbarios Chinos/efectos adversos , Electrocardiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recuperación de la Función , Resultado del Tratamiento
16.
Appl Microbiol Biotechnol ; 102(18): 8035-8048, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29946932

RESUMEN

Thaumarchaeota and Bathyarchaeota (formerly named Miscellaneous Crenarchaeotal Group, MCG) are globally occurring archaea playing potential roles in nitrogen and carbon cycling, especially in marine benthic biogeochemical cycle. Information on their distributional and compositional patterns could provide critical clues to further delineate their physiological and biochemical characteristics. Profiles of thaumarchaeotal and the total archaeal community in the northern South China Sea surface sediments revealed a successively transitional pattern of Thaumarchaeota composition using MiSeq sequencing. Shallow-sea sediment enriched phylotypes decreased gradually along the slope from estuarine and coastal marine region to the deep-sea, while deep-sea sediment enriched phylotypes showed a trend of increasing. Proportion of Thaumarchaeota within the total archaea increased with seawater depth. Phylotypes enriched in shallow- and deep-sea sediments were affiliated to OTUs originated from similar niches, suggesting that physiological adaption not geographical distance shaped the distribution of Thaumarchaeota lineages. Quantitative PCR also depicted a successive decrease of thaumarchaeotal 16S rRNA gene abundance from the highest at shallow-sea sites E708S and E709S (2.57 × 106 and 2.73 × 106 gene copies/g of dry sediment) to the lowest at deep-sea sites E525S and E407S (1.97 × 106 and 2.14 × 106 gene copies/g of dry sediment). Both of the abundance fractions of Bathyarchaeota subgroups (including subgroups 1, 6, 8, 10, 13, 15, 17, and ungrouped Bathyarchaeota) and the total Bathyarchaeota in the total archaea showed a negative distribution to seawater depth. Partitioned distribution of Bathyarchaeota fraction in the total archaea is documented for the first time in this study, and the shallow- and deep-sea Bathyarchaeota could account for 17.8 and 0.8%, respectively, on average. Subgroups 6 and 8, enriched subgroups in shallow-sea sediments, largely explained this partitioned distribution pattern according to seawater depth. Their prevalence in shallow-sea and suboxic estuarine sediments rather than deep-sea sediments hints that their metabolic properties of carbon metabolism are adapted to carbon substrates in these environments.


Asunto(s)
Archaea/aislamiento & purificación , Ríos/microbiología , Archaea/clasificación , Archaea/genética , Biodiversidad , China , ADN de Archaea/genética , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
17.
Anal Chem ; 89(19): 10353-10360, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28861992

RESUMEN

A novel, compact, and green method was developed for the determination and speciation analysis of mercury, based on flow injection photochemical vapor generation (PVG) coupled with miniaturized solution cathode glow discharge-atomic emission spectroscopy (SCGD-AES). The SCGD was generated between a miniature hollow titanium tube and a solution emerging from a glass capillary. Cold mercury vapor (Hg(0)) was generated by PVG and subsequently delivered to the SCGD for excitation, and finally the emission signals were recorded by a miniaturized spectrograph. The detection limits (DLs) of Hg(II) and methylmercury (MeHg) were both determined to be 0.2 µg L-1. Moreover, mercury speciation analysis could also be performed by using different wavelengths and powers from the UV lamp and irradiation times. Both Hg(II) and MeHg can be converted to Hg(0) for the determination of total mercury (T-Hg) with 8 W/254 nm UV lamp and 60 s irradiation time; while only Hg(II) can be reduced to Hg(0) and determined selectively with 4 W/365 nm UV lamp and 20 s irradiation time. Then, the concentration of MeHg can be calculated by subtracting the Hg(II) from the T-Hg. Because of its similar sensitivity and DL at 8 W/254 nm, the simpler and less toxic Hg(II) was used successfully as a primary standard for the quantification of T-Hg. The novel PVG-SCGD-AES system provides not only a 365-fold improvement in the DL for Hg(II) but also a nonchromatographic method for the speciation analysis of mercury. After validating its accuracy, this method was successfully used for mercury speciation analysis of water and biological samples.

18.
Mol Cell Probes ; 30(2): 122-4, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26911890

RESUMEN

A rapid and sensitive recombinase polymerase amplification (RPA) assay, Bruce-RPA, was developed for detection of Brucella. The assay could detect as few as 3 copies of Brucella per reaction within 20 min. Bruce-RPA represents a candidate point-of-care diagnosis assay for human brucellosis.


Asunto(s)
Brucelosis/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas/metabolismo , Sangre/microbiología , Brucelosis/sangre , Cartilla de ADN/genética , Humanos , Técnicas de Diagnóstico Molecular/métodos , Sensibilidad y Especificidad
19.
Acta Biochim Biophys Sin (Shanghai) ; 48(8): 696-703, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27542403

RESUMEN

Gastric cancer is one of the most common malignancies in the world. A number of miRNAs are aberrantly expressed during the progression of gastric cancer. In this study, we aimed to investigate the role of miR-203 in the invasion and metastasis of gastric cancer and the potential mechanism of the effect of miR-203 on the tumor progression of gastric cancer. Our results showed that miR-203 was significantly downregulated in gastric cancer tissues and cells, while ataxia telangiectasia mutated kinase (ATM) was upregulated in gastric cancer tissues and cells and was directly regulated by miR-203. Ectopic overexpression of miR-203 inhibited the colony formation, migration, and invasion of gastric cancer cells. In addition, miR-203 overexpression significantly suppressed the protein level of Snail and obviously promoted the protein level of E-cadherin in gastric cancer cells. ATM knockdown phenocopied the effect of miR-203 overexpression. These results suggested that miR-203 suppressed the migration and invasion of gastric cancer through regulating the level of ATM-mediated-Snail and E-cadherin. MiR-203 might be a novel therapeutic strategy for the treatment of gastric cancer.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/fisiología , MicroARNs/fisiología , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias Gástricas/patología , Cadherinas/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Transcripción de la Familia Snail/metabolismo
20.
Ecotoxicology ; 23(10): 1930-42, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25139035

RESUMEN

Community characteristics of aerobic ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria in Honghe freshwater marsh, a Ramsar-designated wetland in Northeast China, were analyzed in this study. Samples were collected from surface and low layers of sediments in the Experimental, Buffer, and Core Zones in the reserve. Community structures of AOB were investigated using both 16S rRNA and amoA (encoding for the α-subunit of the ammonia monooxygenase) genes. Majority of both 16S rRNA and amoA gene-PCR amplified sequences obtained from the samples in the three zones affiliated with Nitrosospira, which agreed with other wetland studies. A relatively high richness of ß-AOB amoA gene detected in the freshwater marsh might suggest minimal external pressure was experienced, providing a suitable habitat for ß-AOB communities. Anammox bacteria communities were assessed using both 16S rRNA and hzo (encoding for hydrazine oxidoreductase) genes. However, PCR amplification of the hzo gene in all samples failed, suggesting that the utilization of hzo biomarker for detecting anammox bacteria in freshwater marsh might have serious limitations. Results with 16S rRNA gene showed that Candidatus Kuenenia was detected in only the Experimental Zone, whereas Ca. Scalindua including different lineages was observed in both the Buffer and Experimental Zones but not the Core Zone. These results indicated that both AOB and anammox bacteria have specific distribution patterns in the ecosystem corresponding to the extent of anthropogenic impact.


Asunto(s)
Amoníaco/metabolismo , Bacterias/crecimiento & desarrollo , Microbiología del Agua , Contaminantes Químicos del Agua/metabolismo , Humedales , Amoníaco/análisis , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Biodiversidad , China , Sedimentos Geológicos/microbiología , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA