RESUMEN
Human adenovirus (HAdV) is ubiquitous in the human population, constituting a significant burden of global respiratory diseases. Children and individuals with low immunity are at risk of developing severe infections without approved antiviral treatment for HAdV. Our study demonstrated that TRIM35 inhibited HAdV-C5 early gene transcription, early protein expression, genome replication, and infectious virus progeny production. Furthermore, TRIM35 was found to inhibit HAdV replication by attenuating E1A expression. Mechanistically, TRIM35 interacts with and degrades E1A by promoting its K48-linked ubiquitination. Additionally, K253 and K285 are the key sites necessary for TRIM35 degradation. Moreover, an oncolytic adenovirus carrying shTRIM35 was constructed and observed to exhibit improved oncolysis in vivo, providing new ideas for clinical tumor treatment. Our results expand the broad antiviral activity of TRIM35 and mechanically support its application as a HAdV replication inhibitor. IMPORTANCE E1A is an essential human adenovirus (HAdV) protein responsible for the early replication of adenovirus while interacting with multiple host proteins. Understanding the interaction between HAdV E1A and TRIM35 helps identify effective antiviral therapeutic targets. The viral E1A protein is a crucial activator and regulator of viral transcription during the early infection stages. We first reported that TRIM35 interacts with E1A to resist adenovirus infection. Our study demonstrated that TRIM35 targets E1A to resist adenovirus, indicating the applicability of targeting virus-dependent host factors as a suitable antiviral strategy.
Asunto(s)
Proteínas E1A de Adenovirus , Adenovirus Humanos , Proteínas Reguladoras de la Apoptosis , Replicación Viral , Humanos , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Adenovirus Humanos/fisiología , Antivirales/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismoRESUMEN
OBJECTIVE: To assess the immunization efficacy and incidence of adverse reactions after hepatitis B vaccination in children with thalassemia based on data from real-world studies. METHODS: A total of 625 children were recruited into this cross-sectional study. Subgroup analyses of different thalassemia types were performed using binary logistic regression, the factors affecting HBsAb levels were identified using multiple linear regression, and the dose-response relationship between the duration of immunization and seroconversion was explored using the restricted cubic spline (RCS) model to further assess the protective duration of the hepatitis B vaccine. RESULTS: HBsAb positivity in enrolled children was 87.3% in the thalassemia group and 81.4% in the control group. Multifactorial analysis revealed that the duration of immunization, age at completion of vaccination, and whether the first dose was delayed were significant factors influencing HBsAb levels in children (P < 0.05). The threshold for HBsAb positivity may be reached when the immunization duration reaches approximately 30 months. A subgroup analysis revealed that the HBsAb positivity rate was lower in children with ß-thalassemia minor compared to those with α-thalassemia minor (P = 0.001, 95% CI: 0.097 â¼ 0.536). Adverse reactions after hepatitis B vaccination were dominated by general reactions, with a statistically significant difference in injection-site redness and swelling between the thalassemia and control groups (P < 0.05). CONCLUSIONS: The immunization response to the hepatitis B vaccine in children with thalassemia minor was comparable to healthy children, with no abnormal adverse effects seen.
Asunto(s)
Vacunas contra Hepatitis B , Hepatitis B , Humanos , Vacunas contra Hepatitis B/efectos adversos , Vacunas contra Hepatitis B/administración & dosificación , Masculino , Femenino , Niño , Estudios Transversales , Preescolar , Hepatitis B/prevención & control , Talasemia beta , Eficacia de las Vacunas , Anticuerpos contra la Hepatitis B/sangre , Lactante , AdolescenteRESUMEN
High-temperature wireless sensing is crucial for monitoring combustion chambers and turbine stators in aeroengines, where surface temperatures can reach up to 1200 °C. Surface Acoustic Wave (SAW) temperature sensors are an excellent choice for these measurements. However, at extreme temperatures, they face issues such as agglomeration and recrystallization of electrodes, leading to loss of conductivity and reduced quality factor, hindering effective wireless signal transmission. This study develops an LGS SAW sensor with a Pt-10%Rh/Zr/Pt-10%Rh/Zr/Pt-10%Rh/Zr multilayer composite electrode structure to address these challenges. We demonstrate that the sensor can achieve wireless temperature measurements from room temperature to 1200 °C with an accuracy of 1.59%. The composite electrodes excite a quasi-shear wave on the LGS substrate, maintaining a Q-factor of 3526 at room temperature, providing an initial assurance for the strength of the wireless interrogation echo signal. The sensor operates stably for 2.18 h at 1200 °C before adhesion loss between the composite electrode and the substrate causes a sudden increase in resonant frequency. This study highlights the durability of the proposed electrode materials and structure at extreme temperatures and suggests future research to improve adhesion and extend the sensor's lifespan, thereby enhancing the reliability and effectiveness of high-temperature wireless sensing in aerospace applications.
RESUMEN
The utilization of sulfur has been a global issue. Copolymerization of element sulfur (S8) with other monomers is a promising route to convert it to useful materials but is limited by the comonomers. Here, we report anionic hybrid copolymerization of S8 with acrylate and epoxide at room temperature, where S8 does not copolymerize with epoxide in the absence of acrylate. Yet, the proton transfer from the methyne in acrylate to the oxygen anion enables the ring-opening of the cyclic comonomer and hence the copolymerization. The cyclic comonomers can be expanded to lactone and cyclic carbonate. Specifically, the copolymer of S8 with bisphenl A diglycidyl ether and diacrylate displays mechanical properties comparable to those of most common plastics, namely, it has ultimate tensile strength as high as 60.8 MPa and Young's modulus up to 680 MPa. It also exhibits high UV resistance and good transparency. Particularly, it has excellent UV-induced self-healing, reprocessability and closed-loop recyclability due to the abundant dynamic S-S bonds and ester groups. This study provides an efficient strategy to turn element sulfur into closed-loop recyclable polymer with high mechanical and optical performances.
RESUMEN
Large numbers of radiographic images are available in musculoskeletal radiology practices which could be used for training of deep learning models for diagnosis of knee abnormalities. However, those images do not typically contain readily available labels due to limitations of human annotations. The purpose of our study was to develop an automated labeling approach that improves the image classification model to distinguish normal knee images from those with abnormalities or prior arthroplasty. The automated labeler was trained on a small set of labeled data to automatically label a much larger set of unlabeled data, further improving the image classification performance for knee radiographic diagnosis. We used BioBERT and EfficientNet as the feature extraction backbone of the labeler and imaging model, respectively. We developed our approach using 7382 patients and validated it on a separate set of 637 patients. The final image classification model, trained using both manually labeled and pseudo-labeled data, had the higher weighted average AUC (WA-AUC 0.903) value and higher AUC values among all classes (normal AUC 0.894; abnormal AUC 0.896, arthroplasty AUC 0.990) compared to the baseline model (WA-AUC = 0.857; normal AUC 0.842; abnormal AUC 0.848, arthroplasty AUC 0.987), trained using only manually labeled data. Statistical tests show that the improvement is significant on normal (p value < 0.002), abnormal (p value < 0.001), and WA-AUC (p value = 0.001). Our findings demonstrated that the proposed automated labeling approach significantly improves the performance of image classification for radiographic knee diagnosis, allowing for facilitating patient care and curation of large knee datasets.
Asunto(s)
Articulación de la Rodilla , Radiología , Humanos , Radiografía , Articulación de la Rodilla/diagnóstico por imagen , ArtroplastiaRESUMEN
Feline calicivirus (FCV) belongs to the Caliciviridae, which comprises small RNA viruses of both medical and veterinary importance. Once infection has occurred, FCV can persist in the cat population, but the molecular mechanism of how it escapes the innate immune response is still unknown. In this study, we found FCV strain 2280 to be relatively resistant to treatment with IFN-ß. FCV 2280 infection inhibited IFN-induced activation of the ISRE (Interferon-stimulated response element) promoter and transcription of ISGs (Interferon-stimulated genes). The mechanistic analysis showed that the expression of IFNAR1, but not IFNAR2, was markedly reduced in FCV 2280-infected cells by inducing the degradation of IFNAR1 mRNA, which inhibited the phosphorylation of downstream adaptors. Further, overexpression of the FCV 2280 nonstructural protein p30, but not p30 of the attenuated strain F9, downregulated the expression of IFNAR1 mRNA. His-p30 fusion proteins were produced in Escherichia coli and purified, and an in vitro digestion assay was performed. The results showed that 2280 His-p30 could directly degrade IFNAR1 RNA but not IFNAR2 RNA. Moreover, the 5'UTR of IFNAR1 mRNA renders it directly susceptible to cleavage by 2280 p30. Next, we constructed two chimeric viruses: rFCV 2280-F9 p30 and rFCV F9-2280 p30. Compared to infection with the parental virus, rFCV 2280-F9 p30 infection displayed attenuated activities in reducing the level of IFNAR1 and inhibiting the phosphorylation of STAT1 and STAT2, whereas rFCV F9-2280 p30 displayed enhanced activities. Animal experiments showed that the virulence of rFCV 2280-F9 p30 infection was attenuated but that the virulence of rFCV F9-2280 p30 was increased compared to that of the parental viruses. Collectively, these data show that FCV 2280 p30 could directly and selectively degrade IFNAR1 mRNA, thus blocking the type I interferon-induced activation of the JAK-STAT signalling pathway, which may contribute to the pathogenesis of FCV infection.
Asunto(s)
Antivirales/farmacología , Infecciones por Caliciviridae/tratamiento farmacológico , Calicivirus Felino/patogenicidad , Inmunidad Innata/efectos de los fármacos , Interferón Tipo I/metabolismo , Animales , Infecciones por Caliciviridae/virología , Calicivirus Felino/efectos de los fármacos , Calicivirus Felino/inmunología , Enfermedades de los Gatos/virología , Gatos , Interferón Tipo I/inmunología , Interferón beta/genética , Virus/efectos de los fármacos , Virus/genéticaRESUMEN
This paper proposes a displacement sensing method based on magnetic flux measurement. A bridge-structured magnetic circuit, formed by permanent magnets and two ferromagnetic cores, is designed and discussed. The analyses of the equivalent magnetic circuit and three-dimensional finite element simulations showed that the magnetic flux density changes linearly with the reciprocal of the sum of a constant and the displacement. A prototype sensor of the bridge structure is developed that consists of four permanent magnets as excitation, a Hall sensor as reception, and two ferromagnetic cores as the connection. Experiments have validated the feasibility of this method. The measured results show a good linearity between the sensor's output and the reciprocal of the sum of a constant and the displacement, with a correlation coefficient greater than 0.9995 across different measurement ranges. Additionally, the measured results significantly indicate that the proposed sensor is compatible with different ferromagnetic materials with a worst-case error of less than 5%. The proposed sensor has the advantages of low cost and good linearity; however, the test object is limited to ferromagnetic materials.
RESUMEN
MOTIVATION: Modern bioinformatics tools for analyzing large-scale NGS datasets often need to include fast implementations of core sequence alignment algorithms in order to achieve reasonable execution times. We address this need by presenting the BGSA toolkit for optimized implementations of popular bit-parallel global pairwise alignment algorithms on modern microprocessors. RESULTS: BGSA outperforms Edlib, SeqAn and BitPAl for pairwise edit distance computations and Parasail, SeqAn and BitPAl when using more general scoring schemes for pairwise alignments of a batch of sequence reads on both standard multi-core CPUs and Xeon Phi many-core CPUs. Furthermore, banded edit distance performance of BGSA on a Xeon Phi-7210 outperforms the highly optimized NVBio implementation on a Titan X GPU for the seed verification stage of a read mapper by a factor of 4.4. AVAILABILITY AND IMPLEMENTATION: BGSA is open-source and available at https://github.com/sdu-hpcl/BGSA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Algoritmos , Programas Informáticos , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: This study tested the hypothesis that the immunogenicity and safety of the simultaneous administration of enterovirus 71 (EV71) vaccine (dose 1) with recombinant hepatitis B vaccine (HepB) on day 1 and EV71 vaccine (dose 2) with group A meningococcal polysaccharide vaccine (MenA) on day 30 is not inferior to separate administration of each vaccine. METHODS: The study was designed as a randomized, open-label, noninferiority trial. A total of 775 healthy infants aged 6 months were randomly assigned in a ratio of 1:1:1 to receive simultaneous administration of EV71 vaccine (dose 1) and HepB on day 1 and EV71 vaccine (dose 2) and MenA on day 30 (the SI group); administration of doses 1 and 2 of EV71 vaccine on days 1 and 30, respectively (the SE1 group); or administration of HepB and MenA on days 1 and 30, respectively (the SE2 group). RESULTS: According to the per protocol set, antibody responses against EV71, hepatitis B virus (HBV), and group A meningococcal polysaccharide were similar regardless of administration schedule. With the non-inferiority margin setting at 10%, the seroconversion rates of the three pathogens in the SI group (100% [98.25, 100], 44.84% [38.20, 51.63] and 27.83% [21.91, 34.38]) were not inferior to those in SE1 or SE2 group (100% [98.31, 100], 44.35% [37.82, 51.02] and 29.17% [23.20, 35.72], respectively). Frequencies of adverse reactions to each vaccination regimen were comparable (60.62% in the SI group vs 52.33% in the SE1 group and 56.98% in the SE2 group; P = .16). CONCLUSIONS: Simultaneous administration of combined EV71 vaccine with HepB and MenA has noninferior immunogenicity and safety, compared with separate administration of these vaccines. CLINICAL TRIALS REGISTRATION: NCT03274102.
Asunto(s)
Formación de Anticuerpos/inmunología , Vacunas contra Hepatitis B/inmunología , Vacunas Meningococicas/inmunología , Polisacáridos Bacterianos/inmunología , Vacunas Combinadas/inmunología , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología , Anticuerpos Antivirales/inmunología , Enterovirus/inmunología , Infecciones por Enterovirus/inmunología , Femenino , Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Humanos , Lactante , Masculino , Infecciones Meningocócicas/inmunología , Neisseria meningitidis/inmunología , Vacunación/efectos adversosRESUMEN
As a prevalent agent in cats, feline herpesvirus 1 (FHV-1) infection contributes to feline respiratory disease and acute and chronic conjunctivitis. FHV-1 can successfully evade the host innate immune response and persist for the lifetime of the cat. Several mechanisms of immune evasion by human herpesviruses have been elucidated, but the mechanism of immune evasion by FHV-1 remains unknown. In this study, we screened for FHV-1 open reading frames (ORFs) responsible for inhibiting the type I interferon (IFN) pathway with an IFN-ß promoter reporter and analysis of IFN-ß mRNA levels in HEK 293T cells and the Crandell-Reese feline kidney (CRFK) cell line, and we identified the Ser/Thr kinase US3 as the most powerful inhibitor. Furthermore, we found that the anti-IFN activity of US3 depended on its N terminus (amino acids 1 to 75) and was independent of its kinase activity. Mechanistically, the ectopic expression of US3 selectively inhibited IFN regulatory factor 3 (IRF3) promoter activation. Furthermore, US3 bound to the IRF association domain (IAD) of IRF3 and prevented IRF3 dimerization. Finally, US3-deleted recombinant FHV-1 and US3-repaired recombinant FHV-1 (rFHV-dUS3 and rFHV-rUS3, respectively) were constructed. Compared with wild-type FHV-1 and rFHV-rUS3, infection with rFHV-dUS3 induced large amounts of IFN-ß in vitro and in vivo More importantly, US3 deletion significantly attenuated virulence, reduced virus shedding, and blocked the invasion of trigeminal ganglia. These results indicate that FHV-1 US3 efficiently inhibits IFN induction by using a novel immune evasion mechanism and that FHV-1 US3 is a potential regulator of neurovirulence.IMPORTANCE Despite widespread vaccination, the prevalence of FHV-1 remains high, suggesting that it can successfully evade the host innate immune response and infect cats. In this study, we screened viral proteins for inhibiting the IFN pathway and identified the Ser/Thr kinase US3 as the most powerful inhibitor. In contrast to other members of the alphaherpesviruses, FHV-1 US3 blocked the host type I IFN pathway in a kinase-independent manner and via binding to the IRF3 IAD and preventing IRF3 dimerization. More importantly, the depletion of US3 attenuated the anti-IFN activity of FHV-1 and prevented efficient viral replication in vitro and in vivo Also, US3 deletion significantly attenuated virulence and blocked the invasion of trigeminal ganglia. We believe that these findings not only will help us to better understand the mechanism of how FHV-1 manipulates the host IFN response but also highlight the potential role of US3 in the establishment of latent infection in vivo.
Asunto(s)
Alphaherpesvirinae/patogenicidad , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Interferón beta/antagonistas & inhibidores , Nucleotidiltransferasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/metabolismo , Alphaherpesvirinae/genética , Animales , Enfermedades de los Gatos/virología , Gatos , Dimerización , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/genética , Interferón beta/metabolismo , Proteínas de la Membrana/genética , Unión Proteica/fisiología , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología , Proteínas Virales/genéticaRESUMEN
Bluetongue virus (BTV) has been found to trigger autophagy to favor its replication, but the underlying mechanisms have not been clarified. Here, we show that cellular energy metabolism is involved in BTV-induced autophagy. Cellular ATP synthesis was impaired by BTV1 infection, causing metabolic stress, which was responsible for activation of autophagy, since the conversion of LC3 and aggregation of GFP-LC3 (autophagy markers) were suppressed when infection-caused energy depletion was reversed via MP (metabolic substrate) treatment. The reduced virus yields with MP further supported this view. Overall, our findings suggest that BTV1-induced disruption of cellular energy metabolism contributes to autophagy, and this provides new insights into BTV-host interactions.
Asunto(s)
Autofagia , Virus de la Lengua Azul/fisiología , Metabolismo Energético , Replicación Viral , Animales , Virus de la Lengua Azul/patogenicidad , Células Cultivadas , CricetinaeRESUMEN
Epizootic haemorrhagic disease is a non-contagious infectious viral disease of wild and domestic ruminants caused by epizootic hemorrhagic disease virus (EHDV). EHDV belongs to the genus Orbivirus within the family Reoviridae and is transmitted by insects of the genus Culicoides. The impact of epizootic haemorrhagic disease is underscored by its designation as a notifiable disease by the Office International des Epizooties. The EHDV genome consists of 10 linear dsRNA segments (Seg1-Seg10). Until now, no reverse genetics system (RGS) has been developed to generate replication-competent EHDV entirely from cloned cDNA, hampering detailed functional analyses of EHDV biology. Here, we report the generation of viable EHDV entirely from cloned cDNAs. A replication-competent EHDV-2 (Ibaraki BK13 strain) virus incorporating a marker mutation was rescued by transfection of BHK-21 cells with expression plasmids and in vitro synthesized RNA transcripts. Using this RGS, two additional modified EHDV-2 viruses were also generated: one that contained a duplex concatemeric Seg9 gene and another that contained a duplex concatemeric Seg10 gene. The modified EHDV-2 with a duplex Seg9 gene was genetically stable during serial passage in BHK-21 cells. In contrast, the modified EHDV-2 with a duplex Seg10 gene was unstable during serial passage, but displayed enhanced replication kinetics in vitro when compared with the WT virus. This RGS provides a new platform for the investigation of EHDV replication, pathogenesis and novel EHDV vaccines.
Asunto(s)
Enfermedades de los Bovinos/virología , Duplicación de Gen , Reordenamiento Génico , Virus de la Enfermedad Hemorrágica Epizoótica/genética , Infecciones por Reoviridae/veterinaria , Genética Inversa/métodos , Animales , Bovinos , Virus de la Enfermedad Hemorrágica Epizoótica/aislamiento & purificación , Virus de la Enfermedad Hemorrágica Epizoótica/fisiología , Filogenia , Infecciones por Reoviridae/virología , Replicación ViralRESUMEN
Bluetongue virus (BTV) is an important pathogen of wild and domestic ruminants. We have previously reported that BTV1 infection induced autophagy for its own benefit, but how this occurs remains unclear. Here, the classical autophagy features including autophagsomes formation, GFP-LC3 dots and LC3-II conversation were shown in BTV1-infected cells, we also found the endoplasmic reticulum (ER) stress was triggered by BTV1 infection, which was demonstrated by the increased transcription level of the ER stress marker GRP78 and the expanded morphology of ER. During ER stress, PERK and eIF2α phosphorylation increased along with BTV1 infection, consistent with the elevated LC3 level, indicating that the PERK pathway of the unfolded protein response (UPR) was activated. In addition, both the blockage of PERK by GSK2656157 or knockdown of eIF2α by siRNA reduced the level of LC3, which suggested that the PERK-eIF2α pathway contributed to autophagy induced by BTV1. Furthermore, inactivation of PERK or silencing of eIF2α both significantly reduced the expression of VP2 protein and the viral yields in the supernatants. In sum, these data suggest that ER stress mediates autophagy via the PERK-eIF2α pathway and contributes to BTV1 replication, thus offering new insight into the molecular mechanisms of the BTV-host interaction.
Asunto(s)
Virus de la Lengua Azul/patogenicidad , Factor 2 Eucariótico de Iniciación/metabolismo , eIF-2 Quinasa/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagia , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/fisiología , Proteínas de la Cápside/genética , Proteínas de la Cápside/fisiología , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/antagonistas & inhibidores , Factor 2 Eucariótico de Iniciación/genética , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico/metabolismo , Indoles/farmacología , Modelos Biológicos , Transducción de Señal , Respuesta de Proteína Desplegada , Replicación Viral , eIF-2 Quinasa/antagonistas & inhibidoresRESUMEN
Bluetongue virus (BTV) is the etiological agent of bluetongue (BT) disease, a noncontagious insect-transmitted disease of international importance. To date, 26 BTV serotypes have been recognized worldwide. Methods to discriminate BTV serotypes in clinical samples are essential to epidemiological surveillance efforts and BTV vaccination programs. The BTV VP2 major outer capsid protein, encoded by genomic segment 2 (Seg-2), is the most highly variable BTV protein and is the primary determinant of the virus serotype. Here, we report the development of rapid and reliable real-time RT-PCR assays to detect and discriminate 22 BTV serotypes on the basis of VP2-encoding genomic sequences. Serotype-specific primers and probes detected only the targeted BTV serotype and displayed no cross-amplification of off-target BTV serotypes or other closely related Reoviridae and Bunyaviridae family members. The real-time RT-PCR assays developed were highly sensitive, and the majority of serotype-specific reactions could detect template when present at ≥10 copies. These BTV serotype-specific real-time RT-PCR assays represent a rapid, sensitive, and reliable method for the identification, differentiation and quantification of 22 BTV serotypes.
Asunto(s)
Virus de la Lengua Azul/clasificación , Lengua Azul/virología , Genotipo , Técnicas de Genotipaje/métodos , Sondas de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Virus de la Lengua Azul/genética , Sensibilidad y Especificidad , Serogrupo , OvinosRESUMEN
To monitor the moisture content of agricultural products in the drying process in real time, this study applied a model combining multi-sensor fusion and convolutional neural network (CNN) to moisture content online detection. This study built a multi-sensor data acquisition platform and established a CNN prediction model with the raw monitoring data of load sensor, air velocity sensor, temperature sensor, and the tray position as input and the weight of the material as output. The model's predictive performance was compared with that of the linear partial least squares regression (PLSR) and nonlinear support vector machine (SVM) models. A moisture content online detection system was established based on this model. Results of the model performance comparison showed that the CNN prediction model had the optimal prediction effect, with the determination coefficient (R2) and root mean square error (RMSE) of 0.9989 and 6.9, respectively, which were significantly better than those of the other two models. Results of validation experiments showed that the detection system met the requirements of moisture content online detection in the drying process of agricultural products. The R2 and RMSE were 0.9901 and 1.47, respectively, indicating the good performance of the model combining multi-sensor fusion and CNN in moisture content online detection for agricultural products in the drying process. The moisture content online detection system established in this study is of great significance for researching new drying processes and realizing the intelligent development of drying equipment. It also provides a reference for online detection of other indexes in the drying process of agricultural products.
RESUMEN
In this paper, the effects on drying time (Y1), the color difference (Y2), unit energy consumption (Y3), polysaccharide content (Y4), rehydration ratio (Y5), and allantoin content (Y6) of yam slices were investigated under different drying temperatures (50-70 °C), slice thicknesses (2-10 mm), and radiation distances (80-160 mm). The optimal drying conditions were determined by applying the BP neural network wolf algorithm (GWO) model based on response surface methodology (RMS). All the above indices were significantly affected by drying conditions (p < 0.05). The drying rate and effective water diffusion coefficient of yam slices accelerated with increasing temperature and decreasing slice thickness and radiation distance. The selection of lower temperature and slice thickness helped reduce the energy consumption and color difference. The polysaccharide content increased and then decreased with drying temperature, slice thickness, and radiation distance, and it was highest at 60 °C, 6 mm, and 120 mm. At 60 °C, lower slice thickness and radiation distance favored the retention of allantoin content. Under the given constraints (minimization of drying time, unit energy consumption, color difference, and maximization of rehydration ratio, polysaccharide content, and allantoin content), BP-GWO was found to have higher coefficients of determination (R2 = 0.9919 to 0.9983) and lower RMSEs (reduced by 61.34% to 80.03%) than RMS. Multi-objective optimization of BP-GWO was carried out to obtain the optimal drying conditions, as follows: temperature 63.57 °C, slice thickness 4.27 mm, radiation distance 91.39 mm, corresponding to the optimal indices, as follows: Y1 = 133.71 min, Y2 = 7.26, Y3 = 8.54 kJ·h·kg-1, Y4 = 20.73 mg/g, Y5 = 2.84 kg/kg, and Y6 = 3.69 µg/g. In the experimental verification of the prediction results, the relative error between the actual and predicted values was less than 5%, proving the model's reliability for other materials in the drying technology process research to provide a reference.
RESUMEN
Faults play a crucial role in shaping the formation and damage patterns of landslides in the mountainous region, particularly in Qinling-Daba (Qinba) area in China. On 6 October 2022, following a 4-day rainfall event totaling 221.5 mm, a landslide occurred in Hanwang Town, Shaanxi Province. The left boundary of the landslide coincided with a fault, which influence the formation and movement development of the landslide. To further understand and quantified the formation process and damage mechanism of the landslide, a comprehensive study was conducted, incorporating field investigations, local rainfall data, and various methods including unmanned aerial vehicles (UAVs), numerical simulations, and laboratory test. The results indicate that fault dictate the formation of the Lijiaping landslide by influencing the mechanical strength of the rock mass and the catchment topography in the landslide area. Due to fault, the rock mass in the landslide area is high fragmentation, with a softening coefficient of about 0.52. Weathering resulted in numerous residual and slope sediments in the landslide area, providing ample material for the landslide. Meanwhile, the fault activity led to a wedge-shaped topography in the landslide area, with an average Terrain Wetness Index (TWI) of 3.43, significantly higher than the Hanwang Township average of 1.47. This creates a hydrogeological structure favorable for landslides. Numerical simulations revealed that the maximum velocity of the landslide reached 5.05 m/s and the maximum displacement was 53.18 m, both occurring in the central part of the landslide. These findings offer crucial scientific insights for understanding and preventing similar geological hazards.
RESUMEN
IMPORTANCE: miR-26a serves as a potent positive regulator of type I interferon (IFN) responses. By inhibiting USP15 expression, miR-26a promotes RIG-I K63-ubiquitination to enhance type I IFN responses, resulting in an active antiviral state against viruses. Being an intricate regulatory network, the activation of type I IFN responses could in turn suppress miR-26a expression to avoid the disordered activation that might result in the so-called "type I interferonopathy." The knowledge gained would be essential for the development of novel antiviral strategies against viral infection.
Asunto(s)
Interferón Tipo I , MicroARNs , Proteína 58 DEAD Box/metabolismo , Transducción de Señal , MicroARNs/genética , Antivirales/farmacología , Inmunidad InnataRESUMEN
The cGAS-STING-mediated antiviral response plays an important role in the defense against DNA virus infection. Tripartite motif protein 35 (TRIM35), an E3 ubiquitin ligase, was identified as a positive regulator of RLR-mediated antiviral signaling in our previous study, but the effect of TRIM35 on the cGAS-STING signaling pathway has not been elucidated. Herein, we showed that TRIM35 negatively regulates the cGAS-STING signaling pathway by directly targeting STING. TRIM35 overexpression significantly inhibited the cGAMP-triggered phosphorylation of TBK1 and IRF3, attenuating IFN-ß expression and the downstream antiviral response. Mechanistically, TRIM35 colocalized and directly interacted with STING in the cytoplasm. TRM35 removed K63-linked ubiquitin from STING through the C36 and C44 sites in the RING domain, which impaired the interaction of STING with TBK1 or IKKε. In addition, we demonstrated that the RING domain is a key region for the antiviral effects of TIRM35. These results collectively indicate that TRIM35 negatively regulates type I interferon (IFN-I) production by targeting and deubiquitinating STING. TRIM35 may be a potential therapeutic target for controlling viral infection.
RESUMEN
TRIAL REGISTRATION NUMBER: NCT04993365 (ClinicalTrials.gov).