Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 148(5): 896-907, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22341455

RESUMEN

To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-ß/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities.


Asunto(s)
Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Telomerasa/metabolismo , Telómero/metabolismo , Animales , Neoplasias Óseas/secundario , Línea Celular Tumoral , Cruzamientos Genéticos , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Femenino , Inestabilidad Genómica , Humanos , Masculino , Ratones , Proteína p53 Supresora de Tumor/metabolismo
2.
Angew Chem Int Ed Engl ; 62(5): e202214750, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36458940

RESUMEN

Immune checkpoint blockade has become a paradigm-shifting treatment modality to combat cancer, while conventional administration of immune checkpoint inhibitors, such as anti-PD-L1 antibody (α-PD-L1), often shows unsatisfactory immune responses and lead to severe immune-related adverse effects (irAEs). Herein, we develop a PD-L1 aptamer-based spherical nucleic acids (SNAs), which consists of oxaliplatin (OXA) encapsulated in a metal-organic framework nanoparticle core and a dense shell of aptPD-L1 (denoted as M@O-A). Upon light irradiation, this nanosystem enables concurrent photodynamic therapy (PDT), chemotherapy, and enhanced immunotherapy in one shot to inhibit both primary colorectal tumors and untreated distant tumors in mice. Notably, M@O-A shows scarcely any systemic immunotoxicity in a clinical irAEs-mimic transgenic mouse model. Collectively, this study presents a novel strategy for priming robust photo-immunotherapy against cancer with enhanced safety.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Ratones , Línea Celular Tumoral , Antígeno B7-H1 , Inmunoterapia , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico
3.
Anal Chem ; 94(25): 8883-8889, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35704434

RESUMEN

In situ sensing of physiological and pathological species in cancer cells is of great importance to unravel their molecular and cellular processes. However, the biosensing with conventional probes is often limited by the undesired on-target off-tumor interference. Here, we report a novel strategy to design enzymatically controlled nanoflares for sensing and imaging molecular targets in tumor cells. The triggerable nanoflare was designed via rational engineering of structure-switching aptamers with the incorporation of an enzyme-activatable site and further conjugation on gold nanoparticles. The nanoflare sensors did not respond to target molecules in normal cells, but they could be catalytically activated by specific enzymes in cancer cells, thereby enabling cancer-specific sensing and imaging in vitro and in vivo with improved tumor specificity. Considering that diverse aptamers were selected, we expect that this strategy would facilitate the precise detection of a broad range of targets in tumors and may promote the development of smart probes for cancer diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Biosensibles/métodos , Oro
4.
Nano Lett ; 21(7): 2793-2799, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33740379

RESUMEN

Despite progress on DNA-assembled nanoparticle (NP) superstructures, their complicated synthesis procedures hamper their potential biomedical applications. Here, we present an exceptionally simple strategy for the synthesis of single-stranded DNA (ssDNA) assembled Fe3O4 supraparticles (DFe-SPs) as magnetic resonance contrast agents. Unlike traditional approaches that assemble DNA-conjugated NPs via Watson-Crick hybridization, our DFe-SPs are formed with a high yield through one-step synthesis and assembly of ultrasmall Fe3O4 NPs via ssDNA-metal coordination bridges. We demonstrate that the DFe-SPs can efficiently accumulate into tumors for sensitive MR imaging. By virtue of reversible DNA-metal coordination bridges, the DFe-SPs could be disassembled into isolated small NPs in vivo, facilitating their elimination from the body. This work opens a new avenue for the ssDNA-mediated synthesis of superstructures, which expands the repertoire of DNA-directed NP assembly for biomedical applications.


Asunto(s)
Medios de Contraste , ADN de Cadena Simple , Compuestos Férricos , Imagen por Resonancia Magnética
5.
Angew Chem Int Ed Engl ; 61(22): e202117562, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35191157

RESUMEN

Optical control of protein activity represents a promising strategy for precise modulation of biological processes. We report rationally designed, aptamer-based spherical nucleic acids (SNAs) capable of noninvasive and programmable regulation of target protein activity by deep-tissue-penetrable near-infrared (NIR) light. The photoresponsive SNAs are constructed by integrating activatable aptamer modules onto the surface of upconversion nanoparticles. The SNAs remain inert but can be remotely reverted by NIR light irradiation to capture the target protein and thus function as an enzyme inhibitor, while introduction of antidote DNA could further reverse their inhibition functions. Furthermore, we demonstrate the potential of the SNAs as controllable anticoagulants for the NIR light-triggered regulation of thrombin function. Ultimately, the availability of diverse aptamers would allow the design to regulate the activities of various proteins in a programmable manner.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , ADN , Rayos Infrarrojos
6.
Bioorg Chem ; 110: 104783, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33714021

RESUMEN

Paeonone A (1), a unique nonanortriterpenoid, and a new octanortriterpenoid, paeonone B (2), were isolated from the roots of Paeonia lactiflora, together with a known analogue, palbinone (3). Paeonone A (1) is the first example of naturally occurring nonanortriterpenoid with a diketo acid group. Extensive NMR and HRESIMS experiments were applied to identify the structures of 1 and 2, and their absolute configurations were solved by single-crystal X-ray diffraction and ECD data. Biological properties of 1-3 were explored against pancreatic lipase and cancer cell lines.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Inhibidores Enzimáticos/farmacología , Lipasa/antagonistas & inhibidores , Paeonia/química , Raíces de Plantas/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Lipasa/metabolismo , Estructura Molecular , Páncreas/enzimología , Relación Estructura-Actividad
7.
Ecotoxicol Environ Saf ; 219: 112351, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34029838

RESUMEN

BACKGROUND: Exposure to ambient air-borne fine particulate matter (PM2.5) increases respiratory morbidity and mortality. The mechanisms underlying PM2.5-induced adverse effects remain unclear. This study aimed to uncover the molecular mechanisms of PM2.5-induced lung toxicity using a mouse model. METHODS: Scanning electron microscopy and inductively coupled plasma mass spectrometry were used to examine and analyze PM2.5 morphology and element compositions, respectively. Twenty four male mice were randomly divided into three groups: control (PBS), PM2.5 (4.0 mg/kg b.w.), and PM2.5 + Z-YVAD-FMK. In the latter group, the pan-caspase inhibitor (Z-YVAD-FMK) was intraperitoneally injected into mice at a dose of 12.5 mg/kg body weight prior to intratracheal instillation of PM2.5 (4.0 mg/kg b.w.) every other day for a total of 3 times (n = 8 in each group). Bronchoalveolar lavage fluids (BALFs) were collected 24 h after the last instillation of PM2.5. Levels of total proteins (TP), lactate dehydrogenase (LDH), IL-1ß and IL-18 were analyzed for biomarkers of cell injury and inflammation. Additionally, histological alterations of lung tissues were assessed by hematoxylin-eosin staining. mRNA and protein expression of Caspase1, NLRP3 and GSDMD were examined by real-time fluorescent quantitative PCR and immunohistochemical staining. RESULTS: Exposure to PM2.5 increased levels of TP, LDH, IL-1ß, IL-18 and inflammatory cell counts in lung. The mRNA and protein expression of Caspase1, NLRP3 and GSDMD were increased. Inhibition of the NALRP3/Caspase-1 signaling pathway ameliorated PM2.5-induced lung injury and inflammation, partially through suppressing pyroptosis in lung. CONCLUSION: PM2.5 exposure induces lung injury and inflammation, which is mediated by the NALRP3/Caspase-1 signaling pathway.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Material Particulado/toxicidad , Neumonía/inducido químicamente , Animales , Líquido del Lavado Bronquioalveolar , Caspasa 1 , Interleucina-18 , Pulmón/efectos de los fármacos , Enfermedades Pulmonares , Lesión Pulmonar/patología , Masculino , Piroptosis , Transducción de Señal
8.
Zhongguo Zhong Yao Za Zhi ; 46(3): 638-644, 2021 Feb.
Artículo en Zh | MEDLINE | ID: mdl-33645031

RESUMEN

According to human carboxylesterase 2(hCE2) inhibitors reported in the literature, the pharmacophore model of hCE2 inhibitors was developed using HipHop module in Discovery Studio 2016. The optimized pharmacophore model, which was validated by test set, contained two hydrophobic, one hydrogen bond acceptor, and one aromatic ring features. Using the pharmacophore model established, 5 potential hCE2 inhibitors(CS-1,CS-2,CS-3,CS-6 and CS-8) were screened from 20 compounds isolated from the roots of Paeonia lactiflora, which were further confirmed in vitro, with the IC_(50) values of 5.04, 5.21, 5.95, 6.64 and 7.94 µmol·L~(-1), respectively. The results demonstrated that the pharmacophore model exerted excellent forecasting ability with high precision, which could be applied to screen novel hCE2 inhibitors from Chinese medicinal materials.


Asunto(s)
Carboxilesterasa , Carboxilesterasa/antagonistas & inhibidores , Carboxilesterasa/metabolismo , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
9.
Glob Chang Biol ; 26(11): 6116-6133, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32697859

RESUMEN

Balancing crop production and greenhouse gas (GHG) emissions from agriculture soil requires a better understanding and quantification of crop GHG emissions intensity, a measure of GHG emissions per unit crop production. Here we conduct a state-of-the-art estimate of the spatial-temporal variability of GHG emissions intensities for wheat, maize, and rice in China from 1949 to 2012 using an improved agricultural ecosystem model (Dynamic Land Ecosystem Model-Agriculture Version 2.0) and meta-analysis covering 172 field-GHG emissions experiments. The results show that the GHG emissions intensities of these croplands from 1949 to 2012, on average, were 0.10-1.31 kg CO2 -eq/kg, with a significant increase rate of 1.84-3.58 × 10-3  kg CO2 -eq kg-1  year-1 . Nitrogen fertilizer was the dominant factor contributing to the increase in GHG emissions intensity in northern China and increased its impact in southern China in the 2000s. Increasing GHG emissions intensity implies that excessive fertilizer failed to markedly stimulate crop yield increase in China but still exacerbated soil GHG emissions. This study found that overfertilization of more than 60% was mainly located in the winter wheat-summer maize rotation systems in the North China Plain, the winter wheat-rice rotation systems in the middle and lower reaches of the Yangtze River and southwest China, and most of the double rice systems in the South. Our simulations suggest that roughly a one-third reduction in the current N fertilizer application level over these "overfertilization" regions would not significantly influence crop yield but decrease soil GHG emissions by 29.60%-32.50% and GHG emissions intensity by 0.13-0.25 kg CO2 -eq/kg. This reduction is about 29% and 5% of total agricultural soil GHG emissions in China and the world, respectively. This study suggests that improving nitrogen use efficiency would be an effective strategy to mitigate GHG emissions and sustain China's food security.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , China , Cambio Climático , Productos Agrícolas , Ecosistema , Fertilizantes/análisis , Seguridad Alimentaria , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Óxido Nitroso/análisis , Suelo
10.
J Nat Prod ; 83(10): 2940-2949, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32951423

RESUMEN

In a continuing search for potential inhibitors against human carboxylesterases 1A1 and 2A1 (hCES1A1 and hCES2A1), an EtOAc extract of the roots of Paeonia lactiflora showed strong hCES inhibition activity. Bioassay-guided fractionation led to the isolation of 26 terpenoids including 12 new ones (1-5, 7-12, and 26). Among these, sesquiterpenoids 1 and 6, monoterpenoids 10, 11, and 13-15, and triterpenoids 18-20, 22, and 24-26 contributed to the hCES2A1 inhibition, in the IC50 range of 1.9-14.5 µM, while the pentacyclic triterpenoids 18-26 were responsible for the potent inhibitory activity against hCES1A1, with IC50 values less than 5.0 µM. The structures of all the compounds were elucidated using MS and 1D and 2D NMR data, and the absolute configurations of the new compounds were resolved via specific rotation, experimental and calculated ECD spectra, and single-crystal X-ray diffraction analysis. The structure-activity relationship analysis highlighted that the free HO-3 group in the pentacyclic triterpenoids is crucial for their potent inhibitory activity against hCES1A1.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Paeonia , Extractos Vegetales/farmacología , Raíces de Plantas , Carboxilesterasa/antagonistas & inhibidores , Línea Celular Tumoral , Glucósidos , Humanos , Estructura Molecular , Monoterpenos , Sesquiterpenos , Relación Estructura-Actividad
11.
J Nat Prod ; 83(2): 489-496, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32058719

RESUMEN

Six new pairs of isoquinoline alkaloid enantiomers, designated as yanhusanines A-F (1-6), were isolated from an aqueous extract of Corydalis yanhusuo tubers. The structures of these enantiomers were elucidated via physicochemical analysis and a variety of spectroscopic methods. All compounds were resolved into their enantiomers via chiral-phase HPLC, and their configurations were determined by DP4+ NMR calculation methods, specific rotations, and comparison of experimental and calculated ECD spectra. Compounds 1-6 bear a rare 9-methyl moiety, and compound 1 possesses a rare 1-oxa-6-azaspiro[4.5]decane core containing an N-CHO group. Compounds (+)-2, (-)-2, (+)-4, (-)-4, (+)-5, (-)-5, (+)-6, and (-)-6 exhibited selective inhibitory activities against human carboxylesterase (hCE2), in the IC50 value range of 2.0-13.2 µM.


Asunto(s)
Alcaloides/química , Isoquinolinas/química , Alcaloides/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Corydalis/química , Humanos , Isoquinolinas/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular
12.
Nucleic Acids Res ; 46(5): e25, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29237052

RESUMEN

Precise investigation and manipulation of dynamic biological processes often requires molecular modulation in a controlled inducible manner. The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) has emerged as a versatile tool for targeted gene editing and transcriptional programming. Here, we designed and vigorously optimized a series of Hybrid drug Inducible CRISPR/Cas9 Technologies (HIT) for transcriptional activation by grafting a mutated human estrogen receptor (ERT2) to multiple CRISPR/Cas9 systems, which renders them 4-hydroxytamoxifen (4-OHT) inducible for the access of genome. Further, extra functionality of simultaneous genome editing was achieved with one device we named HIT2. Optimized terminal devices herein delivered advantageous performances in comparison with several existing designs. They exerted selective, titratable, rapid and reversible response to drug induction. In addition, these designs were successfully adapted to an orthogonal Cas9. HIT systems developed in this study can be applied for controlled modulation of potentially any genomic loci in multiple modes.


Asunto(s)
Sistemas CRISPR-Cas/efectos de los fármacos , Receptor beta de Estrógeno/genética , Edición Génica/métodos , Tamoxifeno/análogos & derivados , Activación Transcripcional/efectos de los fármacos , Genómica/métodos , Humanos , Mutación , Reproducibilidad de los Resultados , Tamoxifeno/farmacología
13.
Zhongguo Zhong Yao Za Zhi ; 45(12): 2903-2906, 2020 Jun.
Artículo en Zh | MEDLINE | ID: mdl-32627465

RESUMEN

A new lignan glucoside,(+)-fragransin A_2-4-O-ß-D-glucopyranoside(1), has been isolated from the dry root of Paeonia lactiflora by column chromatography on silica gel, Sephadex LH-20, and MCI-gel resin, as well as preparative RP-HPLC. The structure of the new compound was elucidated by spectroscopic data analysis(MS, UV, IR, CD, 1 D and 2 D NMR) and chemical method. Compound 1 showed moderate inhibition against lipopolysaccharide induced nitric oxide production in RAW264.7 macrophages, with an IC_(50) value of 21.3 µmol·L~(-1).


Asunto(s)
Lignanos , Paeonia , Cromatografía Líquida de Alta Presión , Glucósidos , Extractos Vegetales
14.
Zhongguo Zhong Yao Za Zhi ; 45(4): 923-931, 2020 Feb.
Artículo en Zh | MEDLINE | ID: mdl-32237495

RESUMEN

With the widespread use of traditional Chinese medicine(TCM) and the integration of TCM and western medicine, drug-drug interaction(DDI) is considered as a major cause of therapeutic failures and side effects. Cytochrome P450 enzymes(CYPs) are responsible for large number of drug metabolism. CYP3 A4 and CYP2 D6, two important CYP isoforms, are responsible for about 80% drug metabolism of CYPs super family. The inhibition of CYPs is likely to be the most common factor leading to adverse DDI. Therefore, it is of great significance to predict potential CYP3 A4 and CYP2 D6 inhibitors to prevent the DDI. A fast and low-cost me-thod for calculating and predicting CYP inhibiting components was established in this paper, namely support vector machine(SVM) and molecular docking technology which are used to predict and screen drugs. Firstly, 12 qualitative models of two targets were established by using SVM, and the optimal model was selected to predict the compounds in traditional Chinese medicine database(TCMD). Then, molecular docking technology was used to establish docking model. By analyzing the key amino acids involved in drug-target interactions and combining with SVM model, potential inhibitors of CYP3 A4 and CYP2 D6 were found. From the computational results, astin D and epiberberine exhibited inhibition effect on CYP3 A4 and CYP2 D6, respectively. Astin D was only found in astins family from Aster tataricus, while epiberberine was considered to be the active constituent of Coptidis Rhizoma. Therefore, for the risk of DDI, extra attention should be paid to the source of these potential inhibitors, Asteris Radix et Rhizoma and Coptidis Rhizoma. This computational method provides technical support for discovering potential natural inhibitors of CYPs from Chinese herbs by using SVM and molecular docking model, and it is also helpful to recognize the CYPs-mediated DDI existing in TCM, providing research ideas for further pharmacovigilance of integrated therapy.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/análisis , Medicamentos Herbarios Chinos/química , Sistema Enzimático del Citocromo P-450 , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Plantas Medicinales/química
15.
Blood ; 129(3): 358-370, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-27815262

RESUMEN

Somatic mutations in TP53 and NRAS are associated with transformation of human chronic myeloid diseases to acute myeloid leukemia (AML). Here, we report that concurrent RAS pathway and TP53 mutations are identified in a subset of AML patients and confer an inferior overall survival. To further investigate the genetic interaction between p53 loss and endogenous NrasG12D/+ in AML, we generated conditional NrasG12D/+p53-/- mice. Consistent with the clinical data, recipient mice transplanted with NrasG12D/+p53-/- bone marrow cells rapidly develop a highly penetrant AML. We find that p53-/- cooperates with NrasG12D/+ to promote increased quiescence in megakaryocyte-erythroid progenitors (MEPs). NrasG12D/+p53-/- MEPs are transformed to self-renewing AML-initiating cells and are capable of inducing AML in serially transplanted recipients. RNA sequencing analysis revealed that transformed MEPs gain a partial hematopoietic stem cell signature and largely retain an MEP signature. Their distinct transcriptomes suggests a potential regulation by p53 loss. In addition, we show that during AML development, transformed MEPs acquire overexpression of oncogenic Nras, leading to hyperactivation of ERK1/2 signaling. Our results demonstrate that p53-/- synergizes with enhanced oncogenic Nras signaling to transform MEPs and drive AML development. This model may serve as a platform to test candidate therapeutics in this aggressive subset of AML.


Asunto(s)
Transformación Celular Neoplásica/genética , GTP Fosfohidrolasas/genética , Leucemia Mieloide Aguda/patología , Células Progenitoras de Megacariocitos y Eritrocitos/patología , Proteínas de la Membrana/genética , Proteína p53 Supresora de Tumor/genética , Animales , Trasplante de Médula Ósea , Humanos , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/genética , Sistema de Señalización de MAP Quinasas , Ratones , Mutación , Transducción de Señal , Proteína p53 Supresora de Tumor/deficiencia
16.
Chemistry ; 25(59): 13452-13457, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31294499

RESUMEN

The past several decades have witnessed a rapid revolution of DNA nanotechnology. DNA nanostructures are mainly synthesized with two approaches, by assembly of purely DNA-based nanostructures through complementary base pairing or grafting DNA onto nanoparticles (NPs). Despite the progress made, developing simple and universal methods for the synthesis of DNA nanoarchitectures with specific morphologies and functionalities is still a challenge. This article introduces the reader to a new biomimetic methodology that leads to the controlled synthesis of DNA nanoarchitectures based on metal-DNA coordination chemistry and, furthermore, demonstrates the broad biomedical applications of these functional materials. In particular, we highlight the coordination-driven 1) surface-functionalization of NPs with DNA molecules and 2) direct self-assembly of metal-DNA nanostructures. Finally, challenges and opportunities of this approach to develop nanobiotechnology are provided.


Asunto(s)
ADN/química , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Nanotecnología/métodos , Emparejamiento Base
17.
Angew Chem Int Ed Engl ; 58(26): 8804-8808, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31033145

RESUMEN

Inspired by natural biomineralization processes, a simple and universal strategy is introduced to construct a biomimetic nanoplatform for systemic codelivery of a nucleic acid therapeutic (G3139) and a chemotherapeutic drug doxorubicin (DOX). This codelivery system was synthesized through one-pot supramolecular self-assembly of G3139, DOX, and FeII ions through multiple coordination interactions, followed by an adapted surface mineralization with metal-organic frameworks. The resulting core-shell nanoparticles have uniform size, well-defined nanosphere structure, robust colloidal stability, ultrahigh drug loading efficiency and capacity, and precisely adjustable ratios of two therapeutic agents. The system can efficiently accumulate in the tumor, allowing for sensitive MRI detection and synergistical inhibition of tumor growth without apparent systemic toxicity.


Asunto(s)
Biomimética/métodos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Humanos
18.
Angew Chem Int Ed Engl ; 58(5): 1350-1354, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30506904

RESUMEN

Developing simple and general approaches for the synthesis of nanometer-sized DNA materials with specific morphologies and functionalities is important for various applications. Herein, a novel approach for the synthesis of a new set of DNA-based nanoarchitectures through coordination-driven self-assembly of FeII ions and DNA molecules is reported. By fine-tuning the assembly, Fe-DNA nanospheres of precise sizes and controlled compositions can be produced. The hybrid nanoparticles can be tailored for delivery of functional DNA to cells in vitro and in vivo with enhanced biological function. This highlights the potential of metal ion coordination as a tool for directing the assembly of DNA architectures, which conceptualizes a new pathway to expand the repertoire of DNA-based nanomaterials. This methodology will advance both the fields of DNA nanobiotechnology and metal-ligand coordination chemistry.

19.
J Am Chem Soc ; 140(11): 3876-3879, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29518310

RESUMEN

A fundamental understanding of the origin of oxygen evolution reaction (OER) activity of transition-metal-based electrocatalysts, especially for single precious metal atoms supported on layered double hydroxides (LDHs), is highly required for the design of efficient electrocatalysts toward further energy conversion technologies. Here, we aim toward single-atom Au supported on NiFe LDH (sAu/NiFe LDH) to clarify the activity origin of LDHs system and a 6-fold OER activity enhancement by 0.4 wt % sAu decoration. Combining with theoretical calculations, the active behavior of NiFe LDH results from the in situ generated NiFe oxyhydroxide from LDH during the OER process. With the presence of sAu, sAu/NiFe LDH possesses an overpotential of 0.21 V in contrast to the calculated result (0.18 V). We ascribe the excellent OER activity of sAu/NiFe LDH to the charge redistribution of active Fe as well as its surrounding atoms causing by the neighboring sAu on NiFe oxyhydroxide stabilized by interfacial CO32- and H2O interfacing with LDH.

20.
J Nat Prod ; 81(5): 1252-1259, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29741372

RESUMEN

Fractionation of an aqueous extract of the air-dried roots of a traditional Chinese medicinal plant, Paeonia lactiflora, yielded the new monoterpenoid glycosides 1-10. Their structures were assigned via spectroscopic techniques, and the absolute configurations of 1, 4-6, and 8 were verified via chemical methods, specific rotation, and electronic circular dichroism data. Compounds 1-4 are rare compared to the reported cage-like paeoniflorin derivatives; that is, they comprised two monoterpenoidal moieties. In the in vitro assay, compounds 5, 8, and 9 showed weak inhibitions against lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophages, with IC50 values of 64.8, 60.1, and 97.5 µM, respectively.


Asunto(s)
Glicósidos/química , Glicósidos/farmacología , Monoterpenos/química , Monoterpenos/farmacología , Paeonia/química , Raíces de Plantas/química , Animales , Línea Celular , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Glucósidos/química , Glucósidos/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Óxido Nítrico/metabolismo , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA