Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Inorg Chem ; 63(2): 1439-1448, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38178656

RESUMEN

Low phonon tantalate-based phosphors with a layer structure are considered to have excellent upconversion luminescence (UCL) intensity, which could be reduced due to the existence of impure phase defects and inappropriate doped rare earth ions. To improve their UCL performance, we have prepared single-phase CaTa4O11:Er3+/Yb3+ samples by a molten salt synthesis (MSS) using KCl as the reaction medium and compared its UCL properties with counterparts made by a conventional solid-state reaction (SSR) in this study. We have demonstrated that the MSS samples have a much higher UCL intensity under 980 nm laser excitation than the SSR ones due to accurate replacement of Ca2+ sites by Er3+/Yb3+ in high-purity single-phase MSS samples. We have further enhanced the green UCL intensity of the MSS samples by 1.57 times via acid picking (AP). Under 980 nm laser excitation at a high powder density of 61.3 W/cm2, the green UCL intensity of the MSS-AP samples can reach 3.72 times that of the SSR-AP samples. For potential luminescence thermometry applications, the maximum absolute sensitivity (SA) of the MSS-AP samples reaches 0.01316 K-1 at 501 K based on the luminescence intensity ratio. This study shows that CaTa4O11:Er3+/Yb3+ phosphors prepared by the MSS method are single-phase samples with excellent pure green UCL as a suitable temperature sensing material.

2.
Phys Chem Chem Phys ; 22(15): 7844-7852, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32227059

RESUMEN

The optical transition properties of trivalent rare earth (RE3+) doped luminescent materials have received extensive attention. The Judd-Ofelt theory is an effective tool for exploring the optical transition properties for the 4f-4f transitions of lanthanides. The aim of this work is to discover the effect of Er3+ concentration and different Ln3+ ions on the Judd-Ofelt parameters in LnOCl:Er3+ (Ln = Y, La, Gd) phosphors. Oxychloride LnOCl:Er3+ (Ln = Y, La, Gd) phosphors were produced via a single displacement reaction technique. The Judd-Ofelt calculation procedure for RE3+ doped powders was modified and then adopted to obtain the Judd-Ofelt parameters of Er3+ in the studied phosphors. Meanwhile, a new route for examining the Judd-Ofelt calculation quality was proposed and used. It was found that the Er3+ doping concentration slightly affects the optical transition properties of Er3+ in YOCl and LaOCl, but greatly affects the optical transition properties in GdOCl. Moreover, it was also found that the optical transition properties of Er3+ depend also on Ln3+ (Ln = Y, La, Gd) though the crystal structure of these compounds is similar. The Judd-Ofelt parameters of Er3+ are the smallest in LaOCl:Er3+, medium in YOCl:Er3+, but the biggest in GdOCl:Er3+ when the doping concentration is the same.

3.
Phys Chem Chem Phys ; 22(43): 25177-25183, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33124640

RESUMEN

Usually, the optical transition properties of trivalent rare earth (RE) ions in transparent hosts can be quantitatively investigated in the framework of Judd-Ofelt theory. A standard and commonly accepted calculation procedure based on the absorption spectrum has already been established. However, it is hard to assess the optical transition properties of trivalent RE ions doped in powdered and film materials owing to the difficulty in the absolute absorption spectrum measurements. In this work, we proposed a new route to calculate the Judd-Ofelt parameters of trivalent RE ion-doped materials in any morphological and shaped forms. In this method, the fluorescence decay values bridging the radiative transition rates and the Judd-Ofelt parameters were used. As an application example of the proposed Judd-Ofelt calculation method, the Judd-Ofelt parameters of Er3+ in NaYF4 were calculated via the proposed route, and it was found that the obtained results are in reasonable accordance with those derived from other routes. It was also proved that this proposed Judd-Ofelt calculation method is a practicable and effective route for evaluating optical transition properties of trivalent RE ions in non-transparent hosts as long as the fluorescence decay values can be measured.

4.
Inorg Chem ; 58(7): 4500-4507, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30860366

RESUMEN

Tunable blue-green-yellow emitting Sr3YNa(PO4)3F (SYNPF):Ce3+,Tb3+,Mn2+ phosphors have been prepared via a high-temperature solid-state reaction method. The structural and luminescent properties, energy transfer (ET) mechanism, and thermal quenching of the samples are investigated in detail. The ET from Ce3+ to Tb3+ and Mn2+ in SYNPF is identified as the interaction of the electric dipole-quadrupole with ET efficiencies of 81.6% and 69.3%, respectively. The critical distances for Ce3+/Tb3+ and Ce3+/Mn2+ are calculated through the spectral overlap method to be 9.54 and 10.92 Å. Under UV excitation, high-efficiency tunable blue-green-yellow emissions from Ce3+ to Tb3+ and Mn2+ can be obtained. Moreover, white light can also be achieved by adjusting the stoichiometry of Ce3+ and Mn2+ properly in the SYNPF phosphor. In addition, the temperature-dependent luminescence spectra exhibit good thermal quenching behaviors for the as-prepared phosphors. The above results suggest that SYNPF:Ce3+,Tb3+,Mn2+ phosphors can act as color-tunable emission phosphors for potential applications in WLEDs.

5.
Phys Chem Chem Phys ; 21(20): 10840-10845, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31089636

RESUMEN

In this Reply, we truthfully respond to the comments on our recent paper entitled "A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the ß-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation" published in Phys. Chem. Chem. Phys. [Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, R. Hua, A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the beta-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation, Phys. Chem. Chem. Phys., 20, 2018, 15876-15883]. In the Comment, the authors oppugned partial calculation results we reported in our original paper, thus we redid the calculations and compared the presently obtained results with the original ones and the author provided ones. The recalculations and comparisons confirmed that our calculations are reproducible and the results are correct. In the Comment, the authors also made some comments on the Judd-Ofelt calculation approaches for powdered samples reported by other researchers. Following the authors' train of thought we added some supplements to the comments to understand the application strategy of Judd-Ofelt theory. Furthermore, we extended some points of view regarding the fluorescence lifetime measurements the authors presented in the Comment.

6.
Opt Express ; 26(2): 1870-1881, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401909

RESUMEN

Ag-Eu3+ co-doped fluoroborate glass phosphors doped with various Eu3+-concentrations were prepared by a melt-quenching technique. The luminescent properties of these glass phosphors were characterized by excitation and emission spectra. Broad excitation and emission bands located, respectively, at 300-450 nm and 390-700 nm originating from silver aggregates were observed. Strong red emissions were detected under 404 nm violet light-emitting diode (LED) excitation for those Ag-Eu3+ co-doped samples. It was found that these red emissions of Eu3+ well compensated the deficiency of the red spectral components in glasses containing Ag aggregates. In addition, it was confirmed that stable white light could be achieved from the combination of a specific Ag-Eu3+ co-doped fluoroborate glass phosphor and LEDs with different output wavelengths. By adjusting the luminescence intensity ratio of the glass phosphor to the 404 nm violet LED, tunable emitting color was realized, and the studied glass phosphors showed excellent emitting color stability toward LED drive currents. Our results demonstrated that this kind of easy fabrication, low-cost, and highly stable Ag-Eu3+ co-doped fluoroborate glass phosphors had potential application in white LED.

7.
Phys Chem Chem Phys ; 20(23): 15876-15883, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29845990

RESUMEN

It is difficult to calculate the Judd-Ofelt (J-O) parameters for trivalent rare earth (RE)-doped powders due to the unavailable absorption spectrum that is necessarily used in the conventional J-O calculation procedure. In this study, a universal method starting from the diffuse-reflection spectrum for calculating the J-O parameters of RE3+-doped powdered samples was proposed. In this proposed method, by taking the Kubelka-Munk function into account, the absorption cross-section spectrum was derived from the diffuse-reflection spectrum in the RE3+-doped powdered sample using the connection between the absorption cross section and the radiative transition rate of RE3+. Then, the J-O parameters might be calculated from the absorption cross-section spectrum via the traditional J-O calculation technique. The NaYF4:Er3+/Yb3+ and NaYF4:Er3+ phosphors were prepared via an auto-combustion-assisted fluoridation technique, and the J-O calculation was carried out for the obtained samples. The obtained J-O parameters were compared with those reported in the literature and also verified by comparing the calculated radiative transition lifetimes with the experimental values. Finally, it was deduced that the proposed J-O calculation route was practicable.

8.
Mikrochim Acta ; 185(10): 454, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209588

RESUMEN

Accurate detection of temperature and oxygen concentration at the cellular level is important in tumor diagnosis. Multifunctional nanocomposites are described that consist of upconversion luminescent nanoparticles capped with mesoporous silica and loaded with an oxygen-sensitive luminescent ruthenium complex. The nanocomposites of type NaYF4:Yb,Er@NaYF4@mSiO2-Ru have two modes of operation: Its red downconversion luminescence (at excitation/emission peaks of 455/606 nm) is quenched by oxygen (O2), and this is used to sense and image O2. The green upconversion luminescence (typically acquired at excitation/emission wavelengths of 980/525 and 544 nm), in turn, is used to measure temperature. The nanocomposites were then applied to dual mode in-vitro imaging of temperature and O2 in hepatocellular carcinoma cells (HepG-2). Graphical abstract A new multifunctional nanocomposite of mesoporous silica coating NaYF4:Yb,Er@NaYF4 upconversion nanopaticless loaded with ruthenium (II) complex has been designed with both green upconversion and red downconversion luminescence for temperature detection, oxygen sensing and dual mode cell imaging.

9.
Opt Express ; 25(14): 16047-16058, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28789113

RESUMEN

A core-shell structure with a NaYF4:Sm3+/Yb3+ core for photothermal conversion nanocalorifier and a NaYF4:Er3+/Yb3+ shell as temperature probe for potential applications in photothermal therapy (PTT) were synthesized by a thermal decomposition technique of rare-earth oleate complexes. The optical temperature reading-out property for the NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structure was systematically investigated and it was found that in comparison with pure NaYF4:Er3+/Yb3+ particles, the temperature sensing performance of the NaYF4:Er3+/Yb3+ shell did not become worse due to the presence of NaYF4:Sm3+/Yb3+ core. Furthermore, the photothermal conversion behavior for core-shell nanoparticles was successfully examined by dint of temperature sensing of the NaYF4:Er3+/Yb3+ shell, and it was found that an excitation-power-density-dependent temperature increase of up to several tens degrees can be achieved. All the experimental results suggested that the core-shell structure may be an excellent nanocalorifier candidate for advanced temperature-controllable PTT.

10.
J Nanosci Nanotechnol ; 16(1): 542-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27398485

RESUMEN

Eu²âº- and Eu³âº-doped SrAIF5 nanorods were synthesized via a hydrothermal process. The crystal structure and morphology of the final products were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The prepared nanorods' diameters range from 40 to 50 nm, and lengths range from 400 nm to 2 µm along with the doped concentration of rare earth. The f-f transitions of Eu²âº can be observed in the SrAlF5:Eu²âº nanorods at room temperature, and the photo-luminescent (PL) properties of SrAlF5:Eu³âº nanorods are also described.


Asunto(s)
Compuestos de Aluminio/química , Europio/química , Mediciones Luminiscentes , Nanotubos/química , Estroncio/química
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123830, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38184878

RESUMEN

Anti-counterfeiting labels based on luminescence materials are a newly emerging technique for protecting legal goods and intellectual property. In the anti-counterfeiting field to prevent forgery and cloning, luminescence materials with properties different from the commercialized and traditional ones are in urgent need. In this work, multicolor-emitting Er3+ single-doped and Er3+/Yb3+ co-doped Zn2GeO4 phosphors combining static and dynamic identifications were developed in order to achieve advanced anti-counterfeiting application. The variation of trap content with increasing the doping content of rare earth ions was analyzed through X - ray photoelectron spectroscopy, thermoluminescence analysis. It was found that there are two types of traps with different depth in Zn2GeO4 phosphors. The depths of the traps were experimentally confirmed to be 0.68 and 0.79 eV, respectively. The transient photocurrent response measurement confirmed the existence of charge carriers, and the mechanism for long persistent luminescence was deduced. The multicolor upconversion mechanisms under 980 and 1550 nm excitation were also discovered. Based on the multicolor steady and transient emission features, an anti-counterfeiting pattern was designed using the phosphors. Static and dynamic identification was demonstrated and presented in detail. Finally, it is indicated that the studied phosphors are excellent candidates for potential applications in luminescence anti-counterfeiting labels.

12.
Light Sci Appl ; 13(1): 17, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38225231

RESUMEN

Raising photoelectric conversion efficiency and enhancing heat management are two critical concerns for silicon-based solar cells. In this work, efficient Yb3+ infrared emissions from both quantum cutting and upconversion were demonstrated by adjusting Er3+ and Yb3+ concentrations, and thermo-manage-applicable temperature sensing based on the luminescence intensity ratio of two super-low thermal quenching levels was discovered in an Er3+/Yb3+ co-doped tungstate system. The quantum cutting mechanism was clearly decrypted as a two-step energy transfer process from Er3+ to Yb3+. The two-step energy transfer efficiencies, the radiative and nonradiative transition rates of all interested 4 f levels of Er3+ in NaY(WO4)2 were confirmed in the framework of Föster-Dexter theory, Judd-Ofelt theory, and energy gap law, and based on these obtained efficiencies and rates the quantum cutting efficiency was furthermore determined to be as high as 173% in NaY(WO4)2: 5 mol% Er3+/50 mol% Yb3+ sample. Strong and nearly pure infrared upconversion emission of Yb3+ under 1550 nm excitation was achieved in Er3+/Yb3+ co-doped NaY(WO4)2 by adjusting Yb3+ doping concentrations. The Yb3+ induced infrared upconversion emission enhancement was attributed to the efficient energy transfer 4I11/2 (Er3+) + 2F7/2 (Yb3+) → 4I15/2 (Er3+) + 2F5/2 (Yb3+) and large nonradiative relaxation rate of 4I9/2. Analysis on the temperature sensing indicated that the NaY(WO4)2:Er3+/Yb3+ serves well the solar cells as thermos-managing material. Moreover, it was confirmed that the fluorescence thermal quenching of 2H11/2/4S3/2 was caused by the nonradiative relaxation of 4S3/2. All the obtained results suggest that NaY(WO4)2:Er3+/Yb3+ is an excellent material for silicon-based solar cells to improve photoelectric conversion efficiency and thermal management.

13.
Dalton Trans ; 53(14): 6399-6409, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498319

RESUMEN

A series of Tb3+-doped Sr2YTaO6 double perovskite phosphors (SYT:Tb3+) were synthesized using a conventional solid-state reaction method. A strong green emission was observed in the SYT:Tb3+ phosphors, and the optimal doping concentration of Tb3+ was confirmed to be 5 mol%. The electric dipole-dipole interaction was ascribed to be the main mechanism for the luminescence concentration quenching. Analysis of the concentration-dependent fluorescence decay confirmed that the self-generated quenching model holds for the dynamic process of Tb3+ decays in SYT. Furthermore, the internal quantum efficiencies, non-radiative transition rates, and energy transfer rates of the 5D4 level for the SYT:Tb3+ samples were estimated, respectively. The luminescence thermal stability of the sample was also evaluated based on the Arrhenius model. The chromaticity shift of the SYT:5 mol% Tb3+ phosphor was examined to be 0.013 when the sample temperature was increased from 303 to 483 K, thus indicating excellent chromaticity shifting resistance under high temperature conditions. Moreover, the Judd-Ofelt parameters were calculated from the emission spectra of SYT:Tb3+ to be Ω2 = 0.29 × 10-20, Ω4 = 0.45 × 10-20, and Ω6 = 0.72 × 10-20 cm2, respectively. The fluorescence branching ratios and radiative transition rates for the 5D4 level were calculated based on the obtained Judd-Ofelt parameters. Finally, a white light-emitting diode (LED) prototype was assembled using a 310 nm LED chip combined with a prepared green SYT:Tb3+ phosphor and two other commercial blue and red phosphors. The obtained warm white light exhibits good chromaticity coordinates (0.32, 0.32) and a high color rendering index of 96.1. Based on the above results, it can be known that the prepared SYT:Tb3+ phosphors have a potential application as green emitting phosphors in white LEDs.

14.
Dalton Trans ; 52(25): 8770-8777, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37317782

RESUMEN

BiTa7O19:Er3+/Yb3+/Sb phosphors were successfully synthesized by high temperature solid sintering. X-ray diffraction (XRD), fluorescence spectrometry and X-ray photoelectron spectroscopy (XPS), were used to analyze the phase structure, upconversion luminescence (UCL) features and Sb valence state, respectively. The results suggest that polyvalent Sb with Sb3+ and Sb5+ can replace the Ta5+ sites in a BiTa7O19 host to form a pure phase. Compared with BiTa7O19:0.1Er3+/0.4Yb3+, polyvalent Sb doping further improves UCL intensity by 1.2 times under 980 nm laser stimulation with a powder density of 44.59 W cm-2. This is due to the adjustment of the local lattice structure of BiTa7O19 by the polyvalent Sb. The maximum absolute sensitivity (SA) and relative sensitivity (SR) can be estimated from the UCL variable-temperature spectra as 0.0098 K-1 at 356 K and 0.0078 K-1 at 303 K using the luminescence intensity ratio (LIR) approach. The outcomes show that host local lattice adjustment using polyvalent elements is an effective way to improve luminescence intensity, and it is possible to use BiTa7O19:Er3+/Yb3+/Sb as a temperature sensor.

15.
Dalton Trans ; 52(19): 6527-6535, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37098763

RESUMEN

Highly efficient single-component full-color emitting Ca6Y2Na2(PO4)6F2 (CYNPF):Eu2+,Tb3+,Mn2+ phosphors have been synthesized by a high-temperature solid-state reaction. Coupled with the Eu2+, Tb3+, and Mn2+ emission bands centered at 455 nm, 547 nm, and 580 nm, color-tunable white light can be generated. The energy transfer (ET) process from Eu2+ to Tb3+ and Mn2+ is attributed to the resonant dipole-dipole/dipole-dipole interaction mechanism with ultra-high ET efficiency (>90%). The emission color of the phosphors can be tuned from blue to yellowish green and orange with the corresponding CIE chromaticity coordinates of (0.1719, 0.1215), (0.2852, 0.4289), and (0.4752, 0.3903), respectively. Through controlling the concentration ratio of Tb3+ and Mn2+ ions, optimal white light emission can be obtained with CIE coordinates of (0.3381, 0.3353) excited at 365 nm, which is very close to the National Television Standards Committee white (0.330, 0.330). The thermal stability of the Eu2+, Tb3+, and Mn2+ codoped CYNPF phosphors has been investigated systematically. A single-component white LED (wLED) device has been fabricated by combining the CYNPF:Eu2+,Tb3+,Mn2+ phosphor with a 365 nm near-ultraviolet (n-UV) LED chip, which exhibits a high color rendering index (Ra = 80.2) along with a low color temperature of 5207 K and CIE coordinates of (0.3212, 0.3221). The results suggest that the phosphors can be used as a candidate material for single-component white phosphors for n-UV excited full-visible-spectrum wLEDs.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121805, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36099726

RESUMEN

In this study, intense red and extremely weak green up-conversion (UC) luminescence was obtained in BaGd2O4: x mol% Yb3+/y mol% Er3+ phosphors under the excitations of 980 nm and 1550 nm. The corresponding maximum integrated intensity ratios of the red to green UC emissions are 50.3 and 158.7, respectively. The UC luminescence mechanisms upon different excitations were discussed. It was confirmed that two-photon and three-photon processes were responsible for both the red and green UC emissions excited at 980 nm and 1550 nm, respectively. The energy transfer efficiency from Er3+ to Yb3+ was calculated according to the fluorescence lifetime measurement under 1550 nm excitation. Temperature sensing based upon the thermally coupled energy levels 2H11/2/4S3/2 as well as thermally coupled Stark sublevels of 4F9/2 level of Er3+ was investigated under the excitation of 980 nm. The maximum absolute sensitivities were respectively obtained to be 0.42% K-1 at 573 K and 0.18% K-1 at 298 K. Our results indicated that BaGd2O4: Yb3+/Er3+ phosphors might be a kind of promising red UC phosphors with optical temperature measurement function.

17.
Dalton Trans ; 51(39): 14894-14905, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36102880

RESUMEN

Currently, the efficient way to synthesize white light-emitting diodes (WLEDs) is combining a near-ultraviolet (n-UV, 380-420 nm) emitting LED chip with tricolor (red, green, and blue) emitting phosphors. However, further improving the color rendering index (CRI) for WLEDs is hindered by the absence of cyan components. Hence, a series of high-efficiency and continuously tunable Ce3+,Gd3+-doped CaScBO4 (CSBO) blue-cyan phosphors with an orthorhombic structure were successfully developed by a high-temperature solid-state reaction method. Based on density-functional theory (DFT) calculation, a vacancy was produced along with inequivalent replacement (3Ca2+ → 2Ce3+/Gd3+ + V''Ca) when just adding the trivalent cations, meanwhile causing the local environment of the lattice to relax so Ce3+/Gd3+ ions find it easier to enter into Sc3+ sites at a higher doping concentration. Under the excitation of n-UV, the emission peak position moves from 443 nm to 480 nm and two concentration quenching points appear with an increase in Ce3+ ions by defect-induced site-selective occupation. The two samples at concentration quenching points both have high quantum efficiencies of 88.6% and 86.2% and an acceptable thermal quenching performance. The property performance and internal mechanism are illuminated by the excitation and emission spectra and theoretical analysis. Finally, by combining CSBO:Ce3+, commercial green and red phosphors and an n-UV LED chip, an as-fabricated WLED with a great CRI value of 93.2 and a low CCT (4291K) was obtained. This work demonstrates the potential of CSBO:Ce3+ as a blue-cyan phosphor for use in high-quality full-visible-spectrum WLEDs in the future. The investigation of the mechanism for the defect-induced site preferences provides a reference for developing new photoluminescent materials.

18.
Dalton Trans ; 51(32): 12352-12361, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35904086

RESUMEN

A series of Er3+/Yb3+ co-doped Cs3BiSr(P2O7)2 (CBSPO) phosphors with significant thermal enhancement were successfully prepared using the solid-state method and the thermal-enhancing effect was studied in detail. When the temperature increased from 303 to 723 K, the upconversion luminescence (UCL) emission intensities of 2H11/2 → 4I15/2 and 2H11/2 + 4S3/2 → 4I15/2 of Er3+ in CBSPO:0.1Er3+/0.2Yb3+ were enhanced 22.81 and 10.06 times under 980 nm laser excitation, respectively. Meanwhile, the UCL color of the sample obviously changed from orange to green with the increase in temperature. Furthermore, the UCL thermal enhancement mechanism was demonstrated, which originates from phonon-assisted transitions. In addition, the maximum absolute temperature sensitivity for CBSPO:0.1Er3+/0.2Yb3+ was calculated to be 0.01026 K-1 at 563 K via luminescence intensity ratio (LIR) technology. All the results show that the CBSPO:Er3+/Yb3+ phosphors can be used for safety warning and temperature measurement at high temperatures.

19.
Materials (Basel) ; 15(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35329587

RESUMEN

Broadband tunable solid-state lasers continue to present challenges to scientists today. The gain medium is significant for realizing broadband tunable solid-state lasers. In this investigation, the optical gain performance for Tm3+ and Cu+ single-doped and co-doped germanate glasses with broadband emissions was studied via an amplified spontaneous emission (ASE) technique. It was found that the net optical gain coefficients (NOGCs) of Tm3+ single-doped glass were larger than those for Cu+ single-doped glass. When Tm3+ was introduced, the emission broadband width of Cu+-doped glass was effectively extended. Moreover, it was found that for the co-doped glass the NOGCs at the wavelengths for Tm3+ and Cu+ emissions were larger than those of Tm3+ and Cu+ single-doped glasses at the same wavelengths. In addition, the NOGC values of Tm3+ and Cu+ co-doped germanate glasses were of the same order of magnitude, and were maintained in a stable range at different wavelengths. These results indicate that the Tm3+ and Cu+ co-doped glasses studied may be a good candidate medium for broadband tunable solid-state lasers.

20.
J Nanosci Nanotechnol ; 11(11): 9631-5, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22413260

RESUMEN

In this paper, a two-step synthesis method for preparing Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals is introduced. Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals were prepared by combining an autocombustion process with a low temperature solid state reaction. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL) and fluorescence decay were employed to characterize the prepared samples. The results of XRD, TEM and EDS indicated that the products prepared by this method were not a mixture of Y2O3:Eu3+ and YOF:Eu3+ nanocrystals, but Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals. Compared with Y2O3:Eu3+ nanocrystals, a 20% increment in luminescence intensity was observed in the Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals, thus suggesting that coating with a YOF:Eu3+-shell can efficiently block the nonradiative relaxation channels that are induced by surface defect states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA