RESUMEN
Ischemia-reperfusion (IR) injury is primarily characterized by the restoration of blood flow perfusion and oxygen supply to ischemic tissue and organs, but it paradoxically leads to tissue injury aggravation. IR injury is a challenging pathophysiological process that is difficult to avoid clinically and frequently occurs during organ transplantation, surgery, shock resuscitation, and other processes. The major causes of IR injury include increased levels of free radicals, calcium overload, oxidative stress, and excessive inflammatory response. Ghrelin is a newly discovered brain-intestinal peptide with anti-inflammatory and antiapoptotic effects that improve blood supply. The role and mechanism of ghrelin in intestinal ischemia-reperfusion (IIR) injury remain unclear. We hypothesized that ghrelin could attenuate IIR-induced oxidative stress and apoptosis. To investigate this, we established IIR by using a non-invasive arterial clip to clamp the root of the superior mesenteric artery (SMA) in mice. Ghrelin was injected intraperitoneally at a dose of 50 µg/kg 20 min before IIR surgery, and [D-Lys3]-GHRP-6 was injected intraperitoneally at a dose of 12 nmol/kg 20 min before ghrelin injection. We mimicked the IIR process with hypoxia-reoxygenation (HR) in Caco-2 cells, which are similar to intestinal epithelial cells in structure and biochemistry. Our results showed that ghrelin inhibited IIR/HR-induced oxidative stress and apoptosis by activating GHSR-1α. Moreover, it was found that ghrelin activated the GHSR-1α/Sirt1/FOXO1 signaling pathway. We further inhibited Sirt1 and found that Sirt1 was critical for ghrelin-mediated mitigation of IIR/HR injury. Overall, our data suggest that pretreatment with ghrelin reduces oxidative stress and apoptosis to attenuate IIR/HR injury by binding with GHSR-1α to further activate Sirt1.
Asunto(s)
Apoptosis , Proteína Forkhead Box O1 , Ghrelina , Ratones Endogámicos C57BL , Estrés Oxidativo , Receptores de Ghrelina , Daño por Reperfusión , Sirtuina 1 , Ghrelina/farmacología , Ghrelina/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Sirtuina 1/metabolismo , Animales , Ratones , Receptores de Ghrelina/metabolismo , Humanos , Masculino , Proteína Forkhead Box O1/metabolismo , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Intestinos/efectos de los fármacos , Células CACO-2RESUMEN
The C2 sulfonylation of quinoxalinones via a metal-free oxidative S-O cross-coupling strategy for synthesizing 2-sulfonyloxylated quinoxalines is established. It effectively solved the long-standing problems in the C2 transformation of quinoxalinones via a metal-free oxidative O-S coupling strategy. Compared with the traditional C2 transformed quinoxalinones-C2 chlorination method, this protocol is mild, facile, and environmentally friendly and exhibits good atomic economy and excellent functional group tolerance. Moreover, the utility of this methodology and the sulfonyloxyl handles was demonstrated through the synthesis of 2-substituted quinoxaline-based bioactive molecules.
RESUMEN
Nanostructured carbon materials with high porosity and desired chemical functionalities are of immense interest because of their wide application potentials in catalysis, environment, and energy storage. Herein, a top-down templating strategy is presented for the facile synthesis of functional porous carbons, based on the direct carbonization of diverse organic precursors with commercially available metal oxide powders. During the carbonization, the metal oxide powders can evolve into nanoparticles that serve as in situ templates to introduce nanopores in carbons. The porosity and heteroatom doping of the prepared carbon materials can be engineered by varying the organic precursors and/or the metal oxides. It is further demonstrated that the top-down templating strategy is applicable to prepare carbon-based single-atom catalysts with iron-nitrogen sites, which exhibit a high power density of 545 mW cm-2 in a H2 -air proton exchange membrane fuel cell.
Asunto(s)
Carbono , Nanoporos , Óxidos , Porosidad , PolvosRESUMEN
Long noncoding RNAs (lncRNAs) are involved in a variety of cancers, but the role of LncRNA DUBR in lung adenocarcinoma (LUAD), the most prevalent form of lung cancer, remains unclear. In this study we investigated the expression of DUBR in LUAD to ascertain its association with the clinical pathology and prognosis of LUAD. Analysis of mRNA expression in The Cancer Genome Atlas (TCGA) LUAD database and in-house LUAD cohort (n = 94) showed that DUBR was significantly downregulated in LUAD, and was associated with poor prognosis. In LUAD cell lines (H1975, A549), overexpression of DUBR significantly suppressed the migration and invasion of the LUAD cells. We demonstrated that c-Myc could bind to the promoter of DUBR, and transcriptionally suppressed its expression. Knockdown of c-Myc almost completely blocked the invasion and migration of LUAD cells, whereas knockdown of DUBR partially rescued c-Myc-knockdown suppressed cell migration and invasion. Furthermore, DUBR overexpression significantly increased the expression of a downstream protein of DUBR, zinc finger, and BTB domain containing 11 (ZBTB11), in H1975 and A549 cells; knockdown of ZBTB11 partially rescued the DUBR-overexpression suppressed cell migration and invasion; knockdown of c-Myc significantly upregulated the expression of ZBTB11 in LUAD cells. Finally, we revealed that DUBR/ZBTB11 axis suppressed oxidative phosphorylation in LUAD cells. In short, we demonstrate that c-Myc/DUBR/ZBTB11 axis suppresses migration and invasion of LUAD by attenuating cell oxidative phosphorylation, which provides new insights into the regulatory mechanism of DUBR.
Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , ARN Largo no Codificante/metabolismo , Adenocarcinoma del Pulmón/diagnóstico , Dominio BTB-POZ , Movimiento Celular , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Neoplasias Pulmonares/diagnóstico , Estructura Molecular , Fosforilación Oxidativa , ARN Largo no Codificante/genética , Relación Estructura-Actividad , Factores de Transcripción/metabolismoRESUMEN
Bacterial cellulose (BC) is well known as a high-performance dietary fiber. This study investigates the adsorption capacity of BC for cholesterol, sodium cholate, unsaturated oil, and heavy metal ions in vitro. Further, a hyperlipidemia mouse model was constructed to investigate the effects of BC on lipid metabolism, antioxidant levels, and intestinal microflora. The results showed that the maximum adsorption capacities of BC for cholesterol, sodium cholate, Pb2+ and Cr6+ were 11.910, 16.149, 238.337, 1.525 and 1.809 mg/g, respectively. Additionally, BC reduced the blood lipid levels, regulated the peroxide levels, and ameliorated the liver injury in hyperlipidemia mice. Analysis of the intestinal flora revealed that BC improved the bacterial community of intestinal microflora in hyperlipidemia mice. It was found that the abundance of Bacteroidetes was increased, while the abundance of Firmicutes and Proteobacteria was decreased at the phylum level. In addition, increased abundance of Lactobacillus and decreased abundance of Lachnospiraceae and Prevotellaceae were obtained at the genus level. These changes were supposed to be beneficial to the activities of intestinal microflora. To conclude, the findings prove the role of BC in improving lipid metabolism in hyperlipidemia mice and provide a theoretical basis for the utilization of BC in functional food.
Asunto(s)
Hiperlipidemias , Metabolismo de los Lípidos , Animales , Bacterias , Bacteroidetes , Celulosa/farmacología , Colesterol , Hiperlipidemias/tratamiento farmacológico , Ratones , Colato de SodioRESUMEN
PURPOSE: 68Ga-prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) is valuable for detecting primary and recurrent prostatic lesions. This study aimed to evaluate the efficacy of 68Ga-PSMA-11 PET/CT as a triage tool for prostate biopsy (PSMA-TB) and compare with transrectal ultrasound-guided biopsy (TRUS-GB) for the diagnosis of clinically significant prostate cancer (csPCa). METHODS: This single-centre study randomly allocated 120 patients with elevated serum prostate-specific antigen (PSA) levels (> 4 ng/ml) to PSMA-PET or TRUS group. Patients with PSMA-avid lesions (SUVmax ≥ 8.0) underwent PSMA-TB via a single-puncture percutaneous transgluteal approach (n = 25), whilst patients with negative PSMA-PET underwent systematic TRUS-GB (n = 35). All patients in the TRUS group underwent TRUS-GB directly (n = 60). RESULTS: PCa and csPCa were detected in 26/60 (43.3%) and 24/60 (40.0%) patients in the PSMA-PET group and 19/60 (31.6%) and 15/60 (25.0%) in the TRUS group, respectively. In the PSMA-PET group, the detection rate of PCa and csPCa were significantly higher in PSMA-PET-positive than negative patients (PCa, 23/25 (92.0%) vs 3/35 (8.6%), P < 0.01; csPCa, 22/25 (88.0%) vs 2/35 (5.7%), P < 0.01). PSMA-TB detected significantly more PCa and csPCa than TRUS-GB in the TRUS controls (PCa, 21/25 (84.0%) vs 19/60 (31.6%), P < 0.01; csPCa, 20/25 (80.0%) vs 15/60 (25.0%), P < 0.01). PSMA-PET detected significantly more cases of csPCa amongst patients with PSA 4.0-20.0 ng/ml than TRUS (27.02% vs 8.82%, P < 0.05). No haematuria, urinary retention or pelvic infection was observed after PSMA-TB compare with TRUS-GB. CONCLUSIONS: 68Ga-PSMA-11 PET/CT is a feasible imaging technique that may serve as a triage tool for prostate biopsy, and may improve the detection rate of csPCa compared with TRUS-GB, especially in patients with serum PSA 4.0-20.0 ng/ml.
Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Ácido Edético/análogos & derivados , Isótopos de Galio , Radioisótopos de Galio , Humanos , Masculino , Oligopéptidos , Estudios Prospectivos , Antígeno Prostático Específico , Neoplasias de la Próstata/diagnóstico por imagen , Ultrasonografía IntervencionalRESUMEN
Osimertinib (AZD9291) has been widely used for the treatment of EGFR mutant non-small cell lung cancer. However, resistance to osimertinib is inevitable. In this study we elucidated the molecular mechanisms of resistance in osimertinib-resistant NCI-H1975/OSIR cells. We showed that NCI-H1975/OSIR cells underwent epithelial-mesenchymal transition (EMT), which conferred sensitivity to the GPX4 inhibitor 1S, 3R-RSL3 to induce ferroptotic cell death. The EMT occurrence resulted from osimertinib-induced upregulation of TGFß2 that activated SMAD2. On the other hand, we revealed that NCI-H1975/OSIR cells were highly dependent on NF-κB pathway for survival, since treatment with the NF-κB pathway inhibitor BAY 11-7082 or genetic silence of p65 caused much greater cell death as compared with the parental NCI-H1975 cells. In NCI-H1975 cells, osimertinib activated NF-κB pathway, evidenced by the increased p65 nuclear translocation, which was abolished by knockdown of TGFß2. In the cancer genome atlas lung adenocarcinoma data, TGFB2 transcript abundance significantly correlated with EMT-associated genes and NF-κB pathway. In addition, coexistence of EMT and activation of NF-κB pathway was observed in several NCI-H1975/OSIR clones. These findings shed new light on distinct roles of TGFß2 in osimertinib-resistant cells and provide new strategies for treatment of this resistant status.
Asunto(s)
Acrilamidas/farmacología , Compuestos de Anilina/farmacología , Resistencia a Antineoplásicos/fisiología , Transición Epitelial-Mesenquimal/fisiología , Subunidad p50 de NF-kappa B/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Antineoplásicos/farmacología , Carbolinas/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismoRESUMEN
MOTIVATION: With the abundant medical resources, especially literature available online, it is possible for people to understand their own health status and relevant problems autonomously. However, how to obtain the most appropriate answer from the increasingly large-scale database, remains a great challenge. Here, we present a biomedical question answering framework and implement a system, Health Assistant, to enable the search process. METHODS: In Health Assistant, a search engine is firstly designed to rank biomedical documents based on contents. Then various query processing and search techniques are utilized to find the relevant documents. Afterwards, the titles and abstracts of top-N documents are extracted to generate candidate snippets. Finally, our own designed query processing and retrieval approaches for short text are applied to locate the relevant snippets to answer the questions. RESULTS: Our system is evaluated on the BioASQ benchmark datasets, and experimental results demonstrate the effectiveness and robustness of our system, compared to BioASQ participant systems and some state-of-the-art methods on both document retrieval and snippet retrieval tasks. AVAILABILITY AND IMPLEMENTATION: A demo of our system is available at https://github.com/jinzanxia/biomedical-QA.
Asunto(s)
Motor de Búsqueda , Indización y Redacción de Resúmenes , Bases de Datos Factuales , PublicacionesRESUMEN
BACKGROUND: Despite the effective antiretroviral treatment (ART) of HIV-infected individuals, HIV persists in a small pool. Central memory CD4+ T cells (Tcm) make a major contribution to HIV persistence. We found that unlike HLA-DR, CD38 is highly expressed on the Tcm of HIV-infected subjects receiving ART for > 5 years. It has been reported that the half-life of total and episomal HIV DNA in the CD4+CD38+ T cell subset, exhibits lower decay rates at 12 weeks of ART. Whether CD38 contributes to HIV latency in HIV-infected individuals receiving long-term ART is yet to be addressed. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of HIV-infected subjects receiving suppressive ART. The immunophenotyping, proliferation and apoptosis of CD4+ T cell subpopulations were detected by flow cytometry, and the level of CD38 mRNA and total HIV DNA were measured using real-time PCR and digital droplet PCR, respectively. A negative binomial regression model was used to determine the correlation between CD4+CD38+ Tcm and total HIV DNA in CD4+ T cells. RESULTS: CD38 was highly expressed on CD4+ Tcm cells from HIV infected individuals on long-term ART. Comparing with HLA-DR-Tcm and CD4+HLA-DR+ T cells, CD4+CD38+ Tcm cells displayed lower levels of activation (CD25 and CD69) and higher levels of CD127 expression. The proportion of CD38+ Tcm, but not CD38- Tcm cells can predict the total HIV DNA in the CD4+ T cells and the CD38+ Tcm subset harbored higher total HIV DNA copy numbers than the CD38- Tcm subset. After transfected with CD38 si-RNA in CD4+ T cells, the proliferation of CD4+ T cells was inhibited. CONCLUSION: The current date indicates that CD4+CD38+ Tcm cells contribute to HIV persistence in HIV-infected individuals on long-term ART. Our study provides a potential target to resolve HIV persistence.
Asunto(s)
Linfocitos T CD4-Positivos , Infecciones por VIH , Antirretrovirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Humanos , Memoria Inmunológica , Leucocitos MononuclearesRESUMEN
Pulmonary fibrosis is a prototypic chronic progressive lung disease with high morbidity and mortality worldwide. Novel effective therapeutic agents are urgently needed owing to the limited treatment options in clinic. Herein, nagilactone D (NLD), a natural dinorditerpenoid obtained from Podocarpus nagi, was found to suppress transforming growth factor-ß1 (TGF-ß1)-mediated fibrotic process in vitro and bleomycin (BLM)-induced pulmonary fibrosis in vivo. NLD attenuated TGF-ß1-induced expression of fibrotic markers including type I and III collagen, fibronectin, α-SMA, and CTGF in human pulmonary fibroblasts (WI-38 VA-13 and HLF-1 cells). Mechanism study indicated that NLD suppressed TGF-ß1-induced up-regulation of TßR I, and Smad2 phosphorylation, nuclear translocation, and transcriptional activation. Moreover, NLD ameliorated BLM-induced histopathological abnormalities in the lungs of experimental fibrotic mice, suppressed synthesis of relative fibrotic markers and fibroblast-to-myofibroblast transition, as well as BLM-induced up-regulation of TßR I expression and Smad signaling in mouse lungs. These data collectively support NLD to be a potential therapeutic agent for pulmonary fibrosis.
Asunto(s)
Diterpenos/farmacología , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Proteína Smad2/metabolismo , Terpenos/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Biomarcadores/metabolismo , Bleomicina/farmacología , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Fibrosis Pulmonar/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
To explore the clinical characteristics and outcomes in Chinese patients with type I cryoglobulinemia (CG), we retrospectively analyzed the clinical data, management, and outcomes of 45 patients diagnosed with type I CG in our hospital from January 2015 to March 2019. In our study, all type I CGs were secondary to hematologic diseases, and monoclonal gammopathy of unknown significance was the most common primary disease, accounting for 48.9% (n = 22). Additionally, B cell non-Hodgkin lymphoma, Waldenström's macroglobulinemia, and multiple myeloma accounted for 24.4% (n = 11), 20.0% (n = 9), and 6.7% (n = 3), respectively. In patients with type I CG, skin damage was the most common symptom, presenting in 57.8% of the patients, followed by peripheral neuropathy (22.2%) and renal involvement (15.6%). Treatment was initiated in 29 patients (64.4%), and the most common choice was a rituximab-based regimen in 13 patients (44.8%), followed by bortezomib-based regimen in 11 patients (37.9%). Clinical symptoms were significantly improved after treatment, and the clinical remission rate was 86.2%, including 34.5% of complete clinical remission, while the laboratory response rate was 88.9%, including 33.3% of complete response and 55.6% of partial response. The expected 1-year overall survival was 97.8%. In conclusion, for patients with multisystemic involvement, such as skin damage, kidney damage, or peripheral neuropathy, the diagnosis of type I CG should be considered, and the underlying disease needs to be explored. Symptoms and primary diseases should be taken into consideration before choosing initial management.
Asunto(s)
Bortezomib/administración & dosificación , Crioglobulinemia/tratamiento farmacológico , Crioglobulinemia/mortalidad , Rituximab/administración & dosificación , Adulto , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , China/epidemiología , Crioglobulinemia/sangre , Crioglobulinemia/patología , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tasa de SupervivenciaRESUMEN
Norditerpenoids and dinorditerpenoids represent diterpenoids widely distributed in the genus Podocarpus with notable chemical structures and biological activities. We previously reported that nagilactone E (NLE), a dinorditerpenoid isolated from Podocarpus nagi, possessed anticancer effects against lung cancer cells in vitro. In this study we investigated the in vivo effect of NLE against lung cancer as well as the underlying mechanisms. We administered NLE (10 mg·kg-1·d-1, ip) to CB-17/SCID mice bearing human lung cancer cell line A549 xenograft for 3 weeks. We found that NLE administration significantly suppressed the tumor growth without obvious adverse effects. Thereafter, RNA sequencing (RNA-seq) analysis was performed to study the mechanisms of NLE. The effects of NLE on A549 cells have been illustrated by GO and pathway enrichment analyses. CMap dataset analysis supported NLE to be a potential protein synthesis inhibitor. The inhibitory effect of NLE on synthesis of total de novo protein was confirmed in Click-iT assay. Using the pcDNA3-RLUC-POLIRES-FLUC luciferase assay we further demonstrated that NLE inhibited both cap-dependent and cap-independent translation. Finally, molecular docking revealed the low-energy binding conformations of NLE and its potential target RIOK2. In conclusion, NLE is a protein synthesis inhibitor with anticancer activity.
Asunto(s)
Factor de Transcripción Activador 4/antagonistas & inhibidores , Antineoplásicos/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Diterpenos/farmacología , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Células A549 , Factor de Transcripción Activador 4/biosíntesis , Factor de Transcripción Activador 4/genética , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Biología Computacional , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Diterpenos/administración & dosificación , Diterpenos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones SCID , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Inhibidores de la Síntesis de la Proteína/administración & dosificación , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Factor de Transcripción STAT3/biosíntesis , Factor de Transcripción STAT3/genética , Células Tumorales CultivadasRESUMEN
Anlotinib, a multitarget tyrosine kinase inhibitor, is effective as a third-line treatment against non-small cell lung cancer (NSCLC). However, acquired resistance occurs during its administration. To understand the molecular mechanisms of anlotinib resistance, we characterized chromatin accessibility in both the parental and anlotinib-resistant lung cancer cell line NCI-H1975 through ATAC-seq. Compared with the parental cells, we identified 2666 genomic regions with greater accessibility in anlotinib-resistant cells, in which angiogenesis-related processes and the motifs of 21 transcription factors were enriched. Among these transcription factors, TFAP2A was upregulated. TFAP2A knockdown robustly diminished tumor-induced angiogenesis and partially rescued the anti-angiogenic activity of anlotinib. Furthermore, transcriptome analysis indicated that 2280 genes were downregulated in anlotinib-resistant cells with TFAP2A knocked down, among which the PDGFR, TGF-ß, and VEGFR signaling pathways were enriched. Meanwhile, we demonstrated that TFAP2A binds to accessible sites within BMP4 and HSPG2. Collectively, this study suggests that TFAP2A accelerates anlotinib resistance by promoting tumor-induced angiogenesis.
Asunto(s)
Antineoplásicos/farmacología , Cromatina/metabolismo , Resistencia a Antineoplásicos/fisiología , Indoles/farmacología , Neovascularización Patológica/fisiopatología , Quinolinas/farmacología , Factor de Transcripción AP-2/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Neovascularización Patológica/genética , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción AP-2/genéticaRESUMEN
Apple pomace was explored as alternative feedstock for producing bacterial cellulose (BC) by Gluconacetobacter xylinus following a cellulase saccharification performed after pretreatment of 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). The dissolving process of apple pomace cellulose was observed by polarized light microscopy (PLM). As FT-IR and XRD results demonstrated, the IL pretreatment proved to be a physical process and no changes in the crystalline structure occurred during the pretreatment. However, the SEM result showed that more fissures and breakages appeared on the surface of pomace microfibers after IL-pretreating, which increased the contact area with cellulase and improved the enzymatic hydrolysis efficiency. An enhancing effect on the BC yield has been observed, 27% higher yield of BC obtained from hydrolysate as compared to sucrose-based medium indicates efficiency of IL-treated apple pomace to serve as high quality feedstock in BC production.
Asunto(s)
Celulosa/biosíntesis , Gluconacetobacter xylinus/metabolismo , Líquidos Iónicos/química , Celulasa/química , Frutas/química , Frutas/metabolismo , Hidrólisis , Malus/química , Malus/metabolismoRESUMEN
BACKGROUND: Irreversible electroporation (IRE) is a novel ablative technique for hepatobiliary and pancreatic cancers. This review summarizes the data regarding the safety and efficacy of IRE in the treatment of hepatobiliary and pancreatic cancers. DATA SOURCES: Studies were identified by searching PubMed and Embase for articles published in English from database inception through July 31, 2017. For inclusion, each clinical study had to report morbidity and survival data on hepatobiliary and pancreatic cancers treated with IRE and contain at least 10 patients. Studies that met these criteria were included for analysis. Two authors assessed each clinical study for data extraction. The controversial parts were resolved through discussion with seniors. RESULTS: A total of 24 clinical studies were included. Fourteen focused on hepatic ablation with IRE comprising 437 patients with 666 lesions of different tumor types. Two patients (0.5%) died after the IRE procedure. Morbidity of hepatic ablation with IRE ranged from 7% to 35%. Most complications were mild. Complete response for hepatic tumors was reported as 57%-97%. Ten studies with 455 patients focused on pancreatic IRE. The overall mortality of IRE in pancreatic cancer was 2%. Overall severe morbidity of IRE in pancreatic cancer ranged from 0 to 20%. The median overall survival after IRE ranged from 7 to 23 months. Patients treated with IRE combined with surgical resection showed a longer overall survival. CONCLUSIONS: IRE significantly improves the prognosis of advanced hepatobiliary and pancreatic malignances, and companied with less complications. Hence, IRE is a relatively safe and effective non-thermal ablation strategy and potentially recommended as an option for therapy of patients with hepatobiliary and pancreatic malignances.
Asunto(s)
Neoplasias del Sistema Biliar/terapia , Ablación por Catéter/métodos , Electroporación/métodos , Neoplasias Hepáticas/terapia , Neoplasias Pancreáticas/terapia , Seguridad del Paciente , Anciano , Neoplasias del Sistema Biliar/mortalidad , Neoplasias del Sistema Biliar/patología , Terapia Combinada , Femenino , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Análisis de Supervivencia , Resultado del TratamientoRESUMEN
The pseudokinase mixed lineage kinase domain-like protein (MLKL) is a core effector of necroptosis, and its function in necroptosis is widely studied. However, the function of MLKL in apoptosis remains unclear. In the present study, the role of MLKL in chelerythrine (CHE)-promoted apoptosis was studied. A special band of MLKL (i.e., *MLKL) was observed after treatment with CHE. MLKL and *MLKL were accumulated in the nucleus upon treatment with CHE and MLKL silencing reversed the CHE-induced apoptosis. Blockade of CHE-triggered reactive oxygen species (ROS) generation or inhibition of CHE-activated protein kinase-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2 α subunit (eIF2α) pathway reversed the apoptosis. A decreased ROS level inhibited CHE-mediated nuclear translocation of MLKL and *MLKL and the activation of eIF2α, whereas MLKL or eIF2α silencing did not affect the CHE-triggered ROS generation. Furthermore, MLKL silencing prevented the CHE-activated eIF2α signal, and eIF2α silencing blocked the CHE-induced nuclear translocation of MLKL and *MLKL. Our studies suggested that CHE possibly induces apoptosis through the nuclear translocation of MLKL and *MLKL, which is promoted by a mutual regulation between MLKL and PERK-eIF2α pathway in response to ROS formation. The present study clarified the new function of MLKL in apoptosis.
Asunto(s)
Apoptosis/genética , Factor 2 Eucariótico de Iniciación/genética , Necrosis/genética , Proteínas Quinasas/genética , eIF-2 Quinasa/genética , Apoptosis/efectos de los fármacos , Benzofenantridinas/farmacología , Núcleo Celular/genética , Retículo Endoplásmico/genética , Silenciador del Gen , Humanos , Necrosis/patología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
OBJECTIVE: We aimed to investigate the six susceptibility loci of GD identified from European population in Chinese Han population and further to estimate the genetic heterogeneity of them in stratification of our GD patients. DESIGN: Dense mapping studies based on GWAS. PATIENTS: A total of 1536 GD patients and 1516 controls in GWAS stage and 1994 GD patients and 2085 controls and 5033 GD patients and 5389 controls in two replication stages. MEASUREMENTS: Based on our previous GWAS data, independently GD-associated SNPs in each region were identified by TagSNP analysis and logistic regression analysis. The association of these SNPs was investigated in 1994 GD patients and 2085 controls, and then, the significantly associated SNPs (P < 0.05) were further genotyped in a second cohort including 5033 GD patients and 5389 controls. RESULTS: After the first replication stage, four SNPs from three regions with Pfirst < 0.05 were further selected and genotyped in another independent cohort. The association of two SNPs with GD was confirmed in combined Chinese cohorts: rs12575636 at 11q21 (Pcombined = 7.55 × 10-11 , OR = 1.27) and rs1881145 in TRIB2 at 2p25.1 (Pcombined = 5.59 × 10-8 , OR = 1.14). Further study disclosed no significant difference for these SNPs between GD subsets. However, eQTL data revealed that SESN3 could be a potential susceptibility gene of GD in 11q21 region. CONCLUSIONS: Out of the six susceptibility loci of GD identified from European population, two risk loci were confirmed in a large Chinese Han population. There is variability in GD genetic susceptibility in different ethnic groups. SESN3 is a potential susceptible gene of GD in 11q21.
Asunto(s)
Enfermedad de Graves/epidemiología , Enfermedad de Graves/genética , Adulto , Pueblo Asiatico/genética , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Adulto JovenRESUMEN
Intratumor heterogeneity (ITH) in non-small cell lung cancer (NSCLC) may account for resistance after a period of targeted therapies because drugs destroy only a portion of tumor cells. The recognition of ITH helps identify high-risk patients to make effective treatment decisions. However, ITH studies are confounded by interpatient heterogeneity in NSCLC and a large amount of passenger mutations. To address these issues, we recruited NSCLC patients carrying TP53 mutations and selected driver mutations within recurrently mutated genes in NSCLC. A total of 12-paired normal-tumor tissues were subjected to whole-genome/whole-exome sequencing. From these, 367 non-silent mutations were selected as driver mutations and deeply sequenced in 61 intratumoral microdissections. We identified a universal prevalence of heterogeneity in all 12 tumors, indicating branched evolution. Although TP53 mutations were observed in single biopsy of all 12 tumors, most tumors consist of both TP53 mutated and non-mutated cells in separate regions within the same tumor. This suggests the late molecular timing of the acquisition of TP53 mutations; therefore, the detection of TP53 mutations in a single biopsy may simply not reflect the early malignant potential. In addition, we identified regions of loss of heterozygosity surrounding TP53 and CDKN2A mutations in tumor 711, which also exhibited heterogeneity in different regional samples. Because the ITH of driver mutations likely has clinical consequences, further efforts are needed to limit the impact of ITH and to improve therapeutic efficiency, which will benefit NSCLC patients receiving targeted treatments.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Mutación , Análisis de Secuencia de ADN/métodos , Proteína p53 Supresora de Tumor/genética , Progresión de la Enfermedad , Evolución Molecular , Heterogeneidad Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pérdida de Heterocigocidad , FilogeniaRESUMEN
BACKGROUND: A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (<50 copies/ml) and long-term nonprogressors (LTNPs) who maintain normal CD4+ T cell counts for prolonged periods (>10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. METHODS: Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4+ and CD8+ T cells, were collected for meta-analysis. RESULTS: We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4+ and CD8+ T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4+ T cells and the MAPK signaling pathway in CD8+ T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. CONCLUSIONS: Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.
Asunto(s)
Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Infecciones por VIH/genética , Infecciones por VIH/patología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Regulación hacia Abajo/genética , Ontología de Genes , Humanos , Redes y Vías Metabólicas/genética , Transcriptoma/genética , Regulación hacia Arriba/genéticaRESUMEN
Nine new norditerpenoids and dinorditerpenoids, 2-oxonagilactone A (1), 7ß-hydroxynagilactone D (2), nagilactones K and L (3 and 4), 3ß-hydroxynagilactone L (5), 2ß-hydroxynagilactone L (6), 3-epi-15-hydroxynagilactone D (7), 1α-chloro-2ß,3ß,15-trihydroxynagilactone L (8), and 15-hydroxynagilactone L (9), were isolated from the seeds of Podocarpus nagi, along with eight known analogues. The structures of the new compounds were established based on detailed NMR and HRESIMS analysis, as well as from their ECD spectra. The absolute configuration of the known compound 1-deoxy-2α-hydroxynagilactone A (16) was confirmed by single-crystal X-ray diffraction. All of the isolates were tested for their cytotoxic activities against cancer cells. The results indicated that compounds 4 and 6, as well as several known compounds, displayed cytotoxicity against A2780 and HEY cancer cells. Among the new compounds, 2ß-hydroxynagilactone L (6) showed IC50 values of less than 2.5 µM against the two cell lines used. Furthermore, compound 6 induced autophagic flux in A2780 cells, as evidenced by an enhanced expression level of the autophagy marker phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II) and increased mRFP-GFP-LC3 puncta. Also, compound 6 activated the c-Jun N-terminal kinase (JNK) pathway, while pretreatment with the JNK inhibitor SP600125 decreased compound 6-induced autophagy.