Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 38(13): e23751, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38923701

RESUMEN

Mesenchymal stem cells (MSCs) reveal multifaceted immunoregulatory properties, which can be applied for diverse refractory and recurrent disease treatment including acute graft-versus-host disease (aGVHD). Distinguishing from MSCs with considerable challenges before clinical application, MSCs-derived exosomes (MSC-Exos) are cell-free microvesicles with therapeutic ingredients and serve as advantageous alternatives for ameliorating the outcomes of aGVHD. MSC-Exos were enriched and identified by western blotting analysis, NanoSight, and transmission electron microscopy (TEM). Bone marrow-derived MSCs (denoted as MSCs) and exosomes (denoted as MSC-Exos) were infused into the aGVHD SD-Wister rat model via tail vein, and variations in general growth and survival of rats were observed. The level of inflammatory factors in serum was quantized by enzyme-linked immunosorbent assay (ELISA). The pathological conditions of the liver and intestine of rats were observed by frozen sectioning. The ratios of CD4+/CD8+ and Treg cell proportions in peripheral blood, together with the autophagy in the spleen and thymus, were analyzed by flow cytometry. After treatment with MSC-Exos, the survival time of aGVHD rats was prolonged, the clinical manifestations of aGVHD in rats were improved, whereas the pathological damage of aGVHD in the liver and intestine was reduced. According to ELISA, we found that MSC-Exos revealed ameliorative effect upon aGVHD inflammation (e.g., TNF-α, IL-2, INF-γ, IL-4, and TGF-ß) compared to the MSC group. After MSC-Exo treatment, the ratio of Treg cells in peripheral blood was increased, whereas the ratio of CD4+/CD8+ in peripheral blood and the autophagy in the spleen and thymus was decreased. MSC-Exos effectively suppressed the activation of immune cells and the manifestation of the inflammatory response in the aGVHD rat model. Our data would supply new references for MSC-Exo-based "cell-free" biotherapy for aGVHD in future.


Asunto(s)
Exosomas , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , Animales , Exosomas/metabolismo , Enfermedad Injerto contra Huésped/terapia , Ratas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratas Wistar , Masculino , Ratas Sprague-Dawley , Trasplante de Células Madre Mesenquimatosas/métodos , Linfocitos T Reguladores/inmunología , Células de la Médula Ósea/citología , Autofagia
2.
FASEB J ; 38(1): e23317, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095240

RESUMEN

Alzheimer's disease (AD) is currently an incurable neurodegenerative disorder and is the most common etiological cause of dementia. Consequently, it has severe burden on its patients and on their caregivers and represents a global health concern. Clinical investigations have indicated that a dysregulation of peripheral T cell immune homeostasis may be involved in the pathogenesis of AD, as well as in the early stages of AD, characterized by mild cognitive impairment (MCI). However, the characteristics and concomitant feasibility of the use of T-cell receptor (TCR) typing for disease diagnosis remains largely unknown. We employed a high-throughput sequencing and multidimensional bioinformatics analyses for the identification of TCR repertoires present in peripheral blood samples of 10 patients with amnestic MCI (aMCI), 10 patients with AD, and 10 healthy controls (HCs). Based on the characteristics of the TCR repertoires in the amount and diversity of combinations of V-J, the spectrum of immune defense, and differentially expressed genes (DEGs), single and specific TCR profiles were observed in the patient samples of aMCI and AD compared to profiles of HCs. In particular, the diversity of TCR clonotypes manifested a pattern of "decreased first and then increased" pattern during the progression from aMCI to AD, a pattern that was not observed in HC samples. Additionally, a total of 46 and 35 amino acid CDR3 sequences with consistent and reverse expressive abundance with diversity of TCR clonotypes were identified, respectively. Taken together, we provide novel and essential preliminary evidence demonstrating the presence of diversity of T cell repertoires from differentially expressed V-J gene segments and amino acid clonotypes using peripheral blood samples from patients with AD, aMCI, and from HC. Such findings have the potential to reveal potential mechanisms through which aMCI progresses to AD and provide a reference for the future development of immune-related diagnoses and therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Linfocitos T , Disfunción Cognitiva/diagnóstico , Receptores de Antígenos de Linfocitos T , Aminoácidos
3.
Anal Chem ; 96(16): 6236-6244, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38446717

RESUMEN

In recent years, the expression and progression of programmed cell death ligand 1 (PD-L1) as an immunomarker in the context of a cell metabolic environment has gained significant attention in cancer research. However, intercellular bioprocesses that control the dynamics of PD-L1 have been largely unexplored. This study aimed to explore the cell metabolic states and conditions that govern dynamic variations of PD-L1 within the cell metabolic environment using an aptamer-based surface-enhanced Raman scattering (SERS) approach. The aptamer-SERS technique offers a sensitive, rapid, and powerful analytical tool for targeted and nondestructive detection of an immunomarker with high sensitivity and specificity. By combining aptamer-SERS with cell state profiling, we investigated the modulation in PD-L1 expression under different metabolic states, including glucose deprivation, metabolic coenzyme activity, and altered time/concentration-based cytokine availability. The most intriguing features in our findings include the cell-specific responses, cell differentiation by revealing distinct patterns, and dynamics of PD-L1 in different cell lines. Additionally, the time-dependent variations in PD-L1 expression, coupled with the dose-dependent relationship between glucose concentration and PD-L1 levels, underscore the complex interplay between immune checkpoint regulation and cellular metabolism. Therefore, this work demonstrates the advantages of using highly-sensitive and specific aptamer-SERS nanotags for investigating the immune checkpoint dynamics and related metabolic bioprocess.

4.
Cancer Cell Int ; 24(1): 106, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481242

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy and the most frequently acute leukemia of stem cell precursors and the myeloid derivatives in adult. Longitudinal studies have indicated the therapeutic landscape and drug resistance for patients with AML are still intractable, which largely attribute to the deficiency of detailed information upon the pathogenesis. METHODS: In this study, we compared the cellular phenotype of resident NK cells (rAML-NKs, rHD-NKs) and expanded NK cells (eAML-NKs, eHD-NKs) from bone marrow of AML patients (AML) and healthy donors (HD). Then, we took advantage of the co-culture strategy for the evaluation of the in vitro cytotoxicity of NK cells upon diverse tumor cell lines (e.g., K562, Nalm6, U937). With the aid of RNA-sequencing (RNA-SEQ) and bioinformatics analyses (e.g., GOBP analysis, KEGG analysis, GSEA, volcano plot), we verified the similarities and differences of the omics features between eAML-NKs and eHD-NKs. RESULTS: Herein, we verified the sharp decline in the content of total resident NK cells (CD3-CD56+) in rAML-NKs compared to rHD-NKs. Differ from the expanded eHD-NKs, eAML-NKs revealed decline in diverse NK cell subsets (NKG2D+, CD25+, NKp44+, NKp46+) and alterations in cellular vitality but conservations in cytotoxicity. According to transcriptomic analysis, AML-NKs and HD-NKs showed multifaceted distinctions in gene expression profiling and genetic variations. CONCLUSIONS: Collectively, our data revealed the variations in the cytobiological and transcriptomic features between AML-NKs and HD-NKs in bone marrow environment. Our findings would benefit the further development of novel biomarkers for AML diagnosis and NK cell-based cytotherapy in future.

5.
Cancer Cell Int ; 24(1): 116, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539153

RESUMEN

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) have been acknowledged as the most important stromal cells in the bone marrow (BM) microenvironment for physiologic hematopoiesis and the concomitant hematologic malignancies. However, the systematic and detailed dissection of the biological and transcriptomic signatures of BM-MSCs in multiple myeloma (MM) are largely unknown. METHODS: In this study, we isolated and identified BM-MSCs from 10 primary MM patients and 10 healthy donors (HD). On the one hand, we compared the multifaceted biological characteristics of the indicated two BM-MSCs, including biomarker expression pattern, multilineage differentiation potential, stemness and karyotyping, together with the cellular vitality and immunosuppressive property. On the other hand, we took advantage of RNA-SEQ and bioinformatics analysis to verify the similarities and differences at the transcriptomic level between MM-MSCs and HD-MSCs. RESULTS: As to biological phenotypes and biofunctions, MM-MSCs revealed conservation in immunophenotype, stemness and differentiation towards adipocytes and chondrocytes with HD-MSCs, whereas with impaired osteogenic differentiation potential, cellular vitality and immunosuppressive property. As to transcriptomic properties, MM-MSCs revealed multidimensional alterations in gene expression profiling and genetic variations. CONCLUSIONS: Overall, our date systematic and detailed reflected the multifaceted similarities and variations between MM-MSCs and HD-MSCs both at the cellular and molecular levels, and in particular, the alterations of immunomodulation and cellular viability of MM-MSCs, which wound benefit the further exploration of the pathogenesis and new drug application (NDA) of multiple myeloma from the view of BM-MSCs.

6.
Neurochem Res ; 48(10): 3084-3098, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336824

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are spindle-like heterogeneous cell populations with advantageous bidirectional immunomodulatory and hematopoietic support effects. Vascular cellular adhesion molecule-1 (VCAM-1)+ MSCs have been reported to exhibit immunoregulatory and proangiogenic capacities. Here, we studied the effects of VCAM-1+ human umbilical cord (hUC)-MSCs on neuroprotection against cerebral infarction. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), and VCAM-1- and VCAM-1+ hUC-MSCs were intravenously injected into the rat 4 h post-MCAO surgery. Thereafter, modified neurological severity scores (mNSS) were determined, and the Morris water maze test, 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin (H&E), Nissl, TUNEL staining, and qRT-PCR were conducted. Following induction of oxygen-glucose deprivation/reoxygenation (OGD/R), SH-SY5Y cells were co-cultured with VCAM-1- and VCAM-1+ hUC-MSCs. CCK-8, flow cytometry, ELISA, and western blot analyses were performed in vitro. Compared with VCAM-1- hUC-MSCs, administration of VCAM-1+ hUC-MSCs revealed improved therapeutic efficacy against cerebral infarction in rats, as confirmed by lower mNSS scores and infarct volumes, as well as improved learning and memory capacities. In addition, VCAM-1+ hUC-MSCs exhibited improved efficacy against neurological defects in rats with cerebral infarction, accompanied by inhibition of the NLRP3-mediated inflammatory response. VCAM-1+ hUC-MSC co-culture improved the viability and diminished NLRP3-mediated inflammatory response in OGD/R-treated SH-SY5Y cells. Moreover, NLRP3 overexpression in SH-SY5Y cells prevented the beneficial effects of VCAM-1+ hUC-MSC co-culture. Overall, our findings demonstrated the relevance of VCAM-1+ hUC-MSC-based cytotherapy for preclinical neuroprotection against cerebral infarction.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Neuroblastoma , Ratas , Humanos , Animales , Ratas Sprague-Dawley , Molécula 1 de Adhesión Celular Vascular , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Neuroprotección , Infarto de la Arteria Cerebral Media/terapia , Cordón Umbilical
7.
Cell Biol Int ; 47(4): 720-730, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36490221

RESUMEN

Longitudinal investigations have revealed the unique attributes of mesenchymal stem/stromal cells (MSCs) in regenerative medicine. However, the spatio-temporal metabolokinetics and efficacy of MSCs with vascular cell adhesion molecule 1 (also known as CD106) expression in phenotypes and therapeutic effect upon acute lung injury (ALI) mice are largely obscure. For the purpose, we took advantage of the "3IL"-based strategy and Lentivirus-mediated green fluorescent protein (GFP) delivery for the generation of the CD106+ subset (denote as CD106+ -MSCs) from umbilical cord-derived MSCs (denote as NT-MSCs). Therewith, the cellular phenotypes of CD106+ -MSCs including immunophenotypes, multilineage differentiation potential towards adipocytes and osteoblasts were confirmed by flow cytometry and qRT-PCR assay. Meanwhile, multifaceted characteristics of transcriptomic features were analyzed by utilizing the RNA-SEQ and bioinformatics. Furthermore, to compare the therapeutic effects and spatio-temporal dynamics of CD106+ -MSCs, we conducted in vivo fluorescent tracer, hematoxylin and eosin staining, blood smear, blood routine and cytokine detection in mice. Herein, we generated CD106+ -MSCs with GFP expression and confirmed the conservative property of phenotypes. Compared to NT-MSCs with minimal CD106 expression, CD106+ -MSCs manifested consistent distribution and metabolokinetics in vivo but with preferable ameliorative effect upon the pathological appearance and proinflammatory cytokine secretion in ALI mice. Collectively, our data indicated the preferable therapeutic effects of CD106+ -MSCs upon ALI mice, which would benefit the further exploration of the CD106+ subset for pulmonary diseases and investigational new drug application purposes.


Asunto(s)
Lesión Pulmonar Aguda , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Ratones , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Lesión Pulmonar Aguda/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Células Madre Mesenquimatosas/metabolismo
8.
Cell Biol Int ; 47(12): 1976-1986, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641425

RESUMEN

Supernumerary teeth are advantaged sources for high-quality stem cell preparation from both apical papilla (SCAP-Ss) and dental pulp (DPSCs). However, the deficiency of the systematic and detailed comparison of the biological and transcriptomic characteristics of the aforementioned stem cells largely hinders their application in regenerative medicine. Herein, we collected supernumerary teeth for SCAP-S and DPSC isolation and identification by utilizing multiple biological tests (e.g., growth curve, cell cycle and apoptosis, adipogenic and osteogenic differentiation, and quantitative real-time polymerase chain reaction). Furthermore, we took advantage of transcriptome sequencing and multifaceted bioinformatic analyses to dissect the similarities and diversities between them. In this study, we found that SCAP-Ss and DPSCs showed indistinctive signatures in morphology and immunophenotypes, whereas with diversity in cell vitality and multi-lineage differentiation as well as gene expression profiling and differentially expressed genes-associated gene ontology and signaling pathways. Collectively, our data indicated the diversity of the multifaceted signatures of human supernumerary teeth-derived stem cells both at the cellular and molecular levels, which also supplied new references for SCAP-Ss serving as splendid alternative stem cell sources for regenerative medicine purposes.


Asunto(s)
Diente Supernumerario , Transcriptoma , Humanos , Osteogénesis/genética , Diente Supernumerario/genética , Pulpa Dental , Células Madre , Diferenciación Celular , Perfilación de la Expresión Génica , Proliferación Celular , Células Cultivadas , Papila Dental
9.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1630-1639, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37381672

RESUMEN

Umbilical cord blood (UCB) is an advantageous source for hematopoietic stem/progenitor cell (HSPC) transplantation, yet the current strategies for large-scale and cost-effective UCB-HSPC preparation are still unavailable. To overcome these obstacles, we systematically evaluate the feasibility of our newly identified CH02 peptide for ex vivo expansion of CD34 + UCB-HSPCs. We herein report that the CH02 peptide is specifically enriched in HSPC proliferation via activating the FLT3 signaling. Notably, the CH02-based cocktails are adequate for boosting 12-fold ex vivo expansion of UCB-HSPCs. Meanwhile, CH02-preconditioned UCB-HSPCs manifest preferable efficacy upon wound healing in diabetic mice via bidirectional orchestration of proinflammatory and anti-inflammatory factors. Together, our data indicate the advantages of the CH02-based strategy for ex vivo expansion of CD34 + UCB-HSPCs, which will provide new strategies for further development of large-scale HSPC preparation for clinical purposes.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Sangre Fetal , Células Madre Hematopoyéticas , Antígenos CD34 , Moléculas de Adhesión Celular , Péptidos/farmacología , Células Cultivadas
10.
BMC Microbiol ; 22(1): 105, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35421921

RESUMEN

BACKGROUND: State-of-the-art renewal has indicated the improvement of diagnostics of patients with metabolic associated fatty liver disease (MAFLD) and/or type II diabetes mellitus (T2DM) by dissecting the clinical characteristics as well as genomic analysis. However, the deficiency of the characterization of microbial and metabolite signatures largely impedes the symptomatic treatment. METHODS: For the purpose, we retrospectively analyzed the clinical data of 20 patients with MAFLD (short for "M"), 20 cases with MAFLD and T2DM (short for "MD"), together with 19 healthy donors (short for "Ctr"). Microbial and metabolite analyses were further conducted to explore the similarities and differences among the aforementioned populations based on feces and blood samples, respectively. RESULTS: Compared with those in the Ctr group, patients with M or MD revealed multifaceted similarities (e.g., Age, ALP, LDL, BUN) and distinctions in clinical indicators of liver (e.g., BMI, ALT, PCHE, CAP). With the aid of microbial and metabolite analyses as well as bioinformatic analyses, we found that the characteristics of gut microbiota (e.g., abundance, hierarchical clustering, cladogram, species) and lipid metabolism (e.g., metabolite, correlation coefficient and scatter plot) were distinct among the indicated groups. CONCLUSIONS: The patients with MD revealed multifaceted similarities and distinctions in characteristics of microbiome and metabolites with those in the M and HD groups, and in particular, the significantly expressed microbes (e.g., Elusimicrobiota, Berkelbacteria, Cyanobacteria, Peregrinibacteria) and lipid metabolites (e.g., Lipid-Q-P-0765, Lipid-Q-P-0216, Lipid-Q-P-0034, Lipid-Q-P-0800), which would collectively benefit the clinical diagnosis of MAFLD and T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Bacterias/genética , Diabetes Mellitus Tipo 2/complicaciones , Microbioma Gastrointestinal/genética , Humanos , Lípidos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estudios Retrospectivos
11.
Cancer Cell Int ; 22(1): 291, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153574

RESUMEN

BACKGROUND: Perinatal blood including umbilical cord blood and placental blood are splendid sources for allogeneic NK cell generation with high cytotoxicity of combating pathogenic microorganism and malignant tumor. Despite the generation of NK cells from the aforementioned perinatal blood, yet the systematical and detailed information of the biological and transcriptomic signatures of UC-NKs and P-NKs before large-scale clinical applications in disease remodeling is still largely obscure. METHODS: Herein, we took advantage of the "3IL"-based strategy for high-efficient generation of NK cells from umbilical cord blood and placental blood (UC-NKs and P-NKs), respectively. On the one hand, we conducted flow cytometry (FCM) assay and coculture to evaluate the subpopulations, cellular vitality and cytotoxic activity of the aforementioned NK cells. On the other hand, with the aid of RNA-SEQ and multiple bioinformatics analyses, we further dissected the potential diversities of UC-NKs and P-NKs from the perspectives of transcriptomes. RESULTS: On the basis of the "3IL" strategy, high-efficient NKs were generated from mononuclear cells (MNCs) in perinatal blood. P-NKs revealed comparable ex vivo expansion but preferable activation and cytotoxicity upon K562 cells over UC-NKs. Both of the two NKs showed diversity in cellular vitality and transcriptome including apoptotic cells, cell cycle, gene expression profiling and the accompanied multifaceted biological processes. CONCLUSIONS: Our data revealed the multifaceted similarities and differences of UC-NKs and P-NKs both at the cellular and molecular levels. Our findings supply new references for allogeneic NK cell-based immunotherapy in regenerative medicine and will benefit the further exploration for illuminating the underlying mechanism as well.

12.
Biochem Biophys Res Commun ; 534: 149-156, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309274

RESUMEN

Natural killer (NK) cells are pivotal effector lymphocytes characterized for the innate immune response to pathogenic microorganism and tumor cells without priming and sensitization. Despite emerging knowledge has highlighted the rosy prospects in tumor immunosurveillance, yet the large-scale clinical application of NK cell-based therapy is hindered largely attributes to the defects in generating sufficient and high-quality cellular products. Herein, on the basis of 16 kinds of candidate combinations, we investigated the feasibility of cytokine cocktail-based strategy for convenient and standardized NK cell cultivation as well as the multifaceted characteristics and cytotoxicity against tumor cells. Our results revealed that joint utilization of Interleukin (IL)-2, IL-15, IL-18 manifested the optimal facilitation upon the ex vivo expansion and proportion of NK cells in peripheral blood mononuclear cells (PBMCs). Meanwhile, the obtained NK cell population expressed high levels of activating molecules (CD16 and NKG2D) and exhibited splendid cytotoxicity against K562 cell line. Collectively, with the aid of cytokine-based programming, we established an alternative strategy for facilitating the large-scale persistence and activation of NK cells from peripheral blood, which would benefit the NK cell- and chimeric antigen receptor-modified NK (CAR-NK) cell-based autologous or allogeneic tumor immunotherapy.


Asunto(s)
Citotoxicidad Inmunológica , Interleucinas/farmacología , Células Asesinas Naturales/inmunología , Células Cultivadas , Humanos , Memoria Inmunológica , Interleucina-15/farmacología , Interleucina-18/farmacología , Interleucina-2/farmacología , Células K562 , Células Asesinas Naturales/efectos de los fármacos , Leucocitos Mononucleares/inmunología
13.
Cell Biol Int ; 45(2): 345-357, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33085139

RESUMEN

Circulating tumor cells (CTCs) indicate the diagnosis and prognosis of cancer patients, together with benefiting individual treatment and anticancer drug development. However, their large-scale application in general population still requires systematically multifaceted modifications for currently proprietary new technologies based on filtration. We primitively utilized a cell size-based platform to evaluate the recovery efficiency of spiked abnormal cell lines and analyzed circulating abnormal cells (CACs). To dissect the subpopulations of CACs, we conducted immunofluorescent (IF) staining with a combination of unique biomarkers of CTCs and circulating endothelial cells (CECs). Furthermore, we improved the CTC screening system by assessing the feasibility of transferring CTCs for automatic IF analysis, together with simulating and optimizing the circumstances for long-term CTC storage and transportation. We detected CACs in 15 HD candidates with CTC characteristics such as abnormally large cytomorphology, high nuclear-cytoplasmic ratio, and positive for panCK or VIM staining. Thereafter, we improved accuracy of the platform by distinguishing CTCs from CECs, which satisfied the elementary requirement for small-scale CTC screening in HD candidates. Finally, large-scale CTC screening in general population was available after multifaceted modifications including automatic analysis by transferring CTCs on slides, choosing the appropriate blood-collecting tube, optimizing the conditions for long-term CTC storage and transportation, and evaluating the potential effect on the CTC phenotype. Hence, we systematically modified the scope of technique parameters, improved the accuracy of early cancer detection, and made it realizable for large-scale CTC or CEC screening in general population.


Asunto(s)
Células Endoteliales , Neoplasias , Células Neoplásicas Circulantes , Adulto , Anciano , Biomarcadores de Tumor , Células Endoteliales/citología , Células Endoteliales/ultraestructura , Femenino , Células HT29 , Humanos , Masculino , Tamizaje Masivo , Células Madre Mesenquimatosas , Persona de Mediana Edad , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/ultraestructura , Adulto Joven
16.
Artículo en Inglés | MEDLINE | ID: mdl-38523514

RESUMEN

Exosomes secreted by mesenchymal stem/stromal cells (MSC-Exos) are advantageous candidate sources for novel acellular therapy. Despite the current standards of good manufacturing practice (GMP), the deficiency of suitable quality-control methods and the difficulties in large-scale preparation largely restrict the development of therapeutic products and their clinical applications worldwide. Herein, we mainly focus on three dominating issues commonly encountered in exosomal GMP, including issues upstream of the cell culture process, downstream of the purification process, exosomes quality control, and the drug properties of exosomes and their druggability from a corporate perspective. Collectively, in this review article, we put forward the issues of preparing clinical exosome drugs for the treatment of diverse diseases and provide new references for the clinical application of GMP-grade MSC-Exos.

17.
Cell Transplant ; 33: 9636897231218383, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173232

RESUMEN

Human embryonic stem cells (hESCs) are advantaged sources for large-scale and homogeneous mesenchymal stem/stromal cells (MSCs) generation. However, due to the limitations in high-efficiency procedures for hESC-MSCs induction, the systematic and detailed information of mesengenesis and early MSC development are largely obscure. In this study, we took advantage of the well-established twist-related protein 1 (TWIST1)-overexpressing hESCs and two small molecular cocktails (CHIR99021, decitabine) for high-efficient MSC induction. To assess the multidimensional biological and transcriptomic characteristics, we turned to cellular and molecular methods, such as flow cytometry (FCM), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), in vitro tri-lineage differentiation, cytokine secretion analysis, in vivo transplantation for acute liver injury (ALI) management, and bioinformatics analyses (eg, gene ontology-biological processes [GO-BP], Kyoto Encyclopedia of Genes and Genomes [KEGG], HeatMap, and principal component analysis [PCA]). By combining TWIST1 overexpression (denoted as T) and the indicated small molecular cocktails (denoted as S), hESCs high-efficiently differentiated into MSCs (denoted as TS-MSCs, induced by T and S combination) within 2 weeks. TS-MSCs satisfied the criteria for MSC definition and revealed comparable tri-lineage differentiation potential and ameliorative efficacy upon ALI mice. According to RNA-sequencing (SEQ) analysis, we originally illuminated the gradual variations in gene expression pattern and the concomitant biofunctions of the programmed hESC-MSCs. Overall, our data indicated the feasibility of high-efficient generation of hESC-MSCs by TWIST1 and cocktail-based programming. The generated hESC-MSCs revealed multifaceted in vivo and in vitro biofunctions as adult BM-MSCs, which collectively suggested promising prospects in ALI management in future.


Asunto(s)
Células Madre Embrionarias Humanas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Ratones SCID , Ratones Endogámicos NOD , Diferenciación Celular , Hígado , Trasplante de Células Madre Mesenquimatosas/métodos
18.
Am J Cancer Res ; 14(4): 1594-1608, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726273

RESUMEN

Chemoradiotherapy (CRT) and radiotherapy (RT) have served as anticancer treatments and neoadjuvant therapies for conquering multimodal rectal cancers including colorectal carcinoma (CRC), yet the concomitant radiation-induced colorectal fibrosis (RICF) has caused chronic toxicity and stenosis in the colorectal mucosa of patients. Mesenchymal stem/stromal cells (MSCs) with unique bidirectional immunoregulation and anti-fibrotic effect have been recognized as splendid sources for regenerative purposes including intestinal diseases. Herein, we are aiming to verify the feasibility and variations of MSC-based cytotherapy for the remission of RICF from the pathological features and the potential impact upon the transcriptomic signatures of RICF rats. For the purpose, we utilized our well-established RICF Sprague-Dawley (SD) rats by radiation for five weeks, and conducted consecutive intraperitoneal injection of two distinct MSCs for treatment, including MSCs derived from adult adipose tissue (AD-MSCs) and perinatal umbilical cord (UC-MSCs). On the one hand, the efficacy of AD-MSCs and UC-MSCs was assessed by diverse indicators, including weight change, pathological detections (e.g., H&E staining, Masson staining, EVG staining, IF staining, and IHC staining), and proinflammatory and fibrotic factor expression. On the other hand, we turned to RNA-sequencing (RNA-SEQ) and multifaceted bioinformatics analyses (e.g., GOBP, Venn Map, KEGG, and GSEA) to compare the impact of AD-MSC and UC-MSC treatment upon the gene expression profiling and genetic variations. RICF rats after consecutive AD-MSC and UC-MSC administration revealed comparable remission in histopathogenic features and significant suppression of diverse proinflammatory and fibrotic factors expression. Meanwhile, RICF rats after both MSC treatment revealed decrease and variations in the alterations in diverse gene expression and somatic mutations compared to RICF rats. Collectively, our data indicated the comparable therapeutic effect of AD-MSCs and UC-MSCs upon RICF in SD rats, together with the conservations in gene expression profiling and the diverse variations in genetic mutations. Our findings indicated the multifaceted impact of MSC infusion for the supervision of RICF both at the therapeutic and transcriptomic levels, which would provide novel references for the further evaluation and development of MSC-based regimens in future.

19.
Curr Stem Cell Res Ther ; 18(8): 1032-1040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35619293

RESUMEN

Graft-versus-host disease (GvHD), including the acute and chronic types (aGvHD, cGvHD), arise as the dominating secondary disease in patients with unsatisfying consequences of allogeneic hematopoietic stem cell transplantation (HSCT). Approximately half of GvHD patients were steroid-resistant, with a two-year overall survival rate lower than 20%. Worse still, there are no standardized criteria for an optimal second-line therapy for steroid-resistant aGVHD patients. Notably, pioneering investigators have highlighted the ameliorative or therapeutic effects of human umbilical cord-derived mesenchymal stem/stromal cells (hUC-MSCs) upon GvHD largely attributed to their unique hematopoietic-supporting and immunomodulatory properties. Of note, quality control (QC) is the prerequisite to assure the safety and quality of hUC-MSCs before investigational new drug (IND) applications and large-scale clinical applications. Herein, we summarize the state-of-the-art updates upon IND-associated QC and clinical trials of hUC-MSCs during allogeneic HSCT in China. Meanwhile, the supervisory policy and medical ethics of current licensed MSC products for GvHD administration and the concomitant opportunities and challenges have also been discussed.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Aplicación de Nuevas Drogas en Investigación , Enfermedad Injerto contra Huésped/terapia , Inmunomodulación
20.
Oncol Lett ; 25(5): 176, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37033103

RESUMEN

Breast cancer is the most common malignancy and ranks second among the causes of tumor-associated death in females. The recurrence and drug resistance of breast cancer are intractable due to the presence of breast cancer stem cells (BCSCs), which are adequate to initiate tumor formation and refractory to conventional remedies. Runt-related transcription factor 2 (RUNX2), a pivotal transcription factor in mammary gland and bone development, has also been related to metastatic cancer and BCSCs. State-of-the-art research has indicated the retention of RUNX2 expression in a more invasive subtype of breast cancer, and in particular, triple-negative breast cancer development and drug resistance are associated with estrogen receptor signaling pathways. The present review mainly focused on the latest updates on RUNX2 in BCSCs and their roles in breast cancer progression and drug resistance, providing insight that may aid the development of RUNX2-based diagnostics and treatments for breast cancer in clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA