Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Amino Acids ; 56(1): 11, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319413

RESUMEN

The organic anion-transporting polypeptide 1B3 and P-glycoprotein (P-gp) provide efficient directional transport (OATP1B3-P-gp) from the blood to the bile that serves as a key determinant of hepatic disposition of the drug. Unfortunately, there is still a lack of effective means to evaluate the disposal ability mediated by transporters. The present study was designed to identify a suitable endogenous biomarker for the assessment of OATP1B3-P-gp function in the liver. We established stably transfected HEK293T-OATP1B3 and HEK293T-P-gp cell lines. Results showed that azelaic acid (AzA) was an endogenous substrate for OATP1B3 and P-gp using serum pharmacology combined with metabolomics. There is a good correlation between the serum concentration of AzA and probe drugs of rOATP1B3 and rP-gp when rats were treated with their inhibitors. Importantly, after 5-fluorouracil-induced rat liver injury, the relative mRNA level and expression of rOATP1B3 and rP-gp were markedly down-regulated in the liver, and the serum concentration of AzA was significantly increased. These observations suggest that AzA is an endogenous substrate of both OATP1B3 and P-gp, and may serve as a potential endogenous biomarker for the assessment of the function of OATP1B3-P-gp for the prediction of changes in the pharmacokinetics of drugs transported by OATP1B3-P-gp in liver disease states.


Asunto(s)
Ácidos Dicarboxílicos , Hígado , Metabolómica , Animales , Humanos , Ratas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Biomarcadores , Células HEK293 , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos
2.
J Integr Neurosci ; 23(5): 93, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812381

RESUMEN

BACKGROUND: Magnetoencephalography (MEG) is a non-invasive imaging technique for directly measuring the external magnetic field generated from synchronously activated pyramidal neurons in the brain. The optically pumped magnetometer (OPM) is known for its less expensive, non-cryogenic, movable and user-friendly custom-design provides the potential for a change in functional neuroimaging based on MEG. METHODS: An array of OPMs covering the opposite sides of a subject's head is placed inside a magnetically shielded room (MSR) and responses evoked from the auditory cortices are measured. RESULTS: High signal-to-noise ratio auditory evoked response fields (AEFs) were detected by a wearable OPM-MEG system in a MSR, for which a flexible helmet was specially designed to minimize the sensor-to-head distance, along with a set of bi-planar coils developed for background field and gradient nulling. Neuronal current sources activated in AEF experiments were localized and the auditory cortices showed the highest activities. Performance of the hybrid optically pumped magnetometer-magnetoencephalography/electroencephalography (OPM-MEG/EEG) system was also assessed. CONCLUSIONS: The multi-channel OPM-MEG system performs well in a custom built MSR equipped with bi-planar coils and detects human AEFs with a flexible helmet. Moreover, the similarities and differences of auditory evoked potentials (AEPs) and AEFs are discussed, while the operation of OPM-MEG sensors in conjunction with EEG electrodes provides an encouraging combination for the exploration of hybrid OPM-MEG/EEG systems.


Asunto(s)
Corteza Auditiva , Electroencefalografía , Potenciales Evocados Auditivos , Magnetoencefalografía , Humanos , Magnetoencefalografía/instrumentación , Potenciales Evocados Auditivos/fisiología , Corteza Auditiva/fisiología , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Adulto , Masculino
3.
BMC Genomics ; 24(1): 747, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057699

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a central nervous system disease caused by external trauma, which has complex pathological and physiological mechanisms. The aim of this study was to explore the correlation between immune cell infiltration and ferroptosis post-TBI. METHODS: This study utilized the GEO database to download TBI data and performed differentially expressed genes (DEGs) and ferroptosis-related differentially expressed genes (FRDEGs) analysis. DEGs were further analyzed for enrichment using the DAVID 6.8. Immunoinfiltration cell analysis was performed using the ssGSEA package and the Timer2.0 tool. The WGCNA analysis was then used to explore the gene modules in the data set associated with differential expression of immune cell infiltration and to identify the hub genes. The tidyverse package and corrplot package were used to calculate the correlations between hub genes and immune cell infiltration and ferroptosis-marker genes. The miRDB and TargetScan databases were used to predict complementary miRNAs for the Hub genes selected from the WGCNA analysis, and the DIANA-LncBasev3 tool was used to identify target lncRNAs for the miRNAs, constructing an mRNA-miRNA-lncRNA regulatory network. RESULTS: A total of 320 DEGs and 21 FRDEGs were identified in GSE128543. GO and KEGG analyses showed that the DEGs after TBI were primarily associated with inflammation and immune response. Xcell and ssGSEA immune infiltration cell analysis showed significant infiltration of T cell CD4+ central memory, T cell CD4+ Th2, B cell memory, B cell naive, monocyte, macrophage, and myeloid dendritic cell activated. The WGCNA analysis identified two modules associated with differentially expressed immune cells and identified Lgmn as a hub gene associated with immune infiltrating cells. Lgmn showed significant correlation with immune cells and ferroptosis-marker genes, including Gpx4, Hspb1, Nfe2l2, Ptgs2, Fth1, and Tfrc. Finally, an mRNA-miRNA-lncRNA regulatory network was constructed using Lgmn. CONCLUSION: Our results indicate that there is a certain correlation between ferroptosis and immune infiltrating cells in brain tissue after TBI, and that Lgmn plays an important role in this process.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ferroptosis , MicroARNs , ARN Largo no Codificante , Humanos , Ferroptosis/genética , ARN Largo no Codificante/genética , Lesiones Traumáticas del Encéfalo/genética , MicroARNs/genética , ARN Mensajero
4.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446016

RESUMEN

Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor for renal interstitial fibrosis. Numerous studies have reported that increased mast cells (MCs) are closely associated with kidney injury induced by different triggering factors. This study investigated the effect of MCs on renal injury in rats caused by hyperuricemia and the relationship between MCs and renal fibrosis. Our results reveal that hyperuricemia contributes to renal injury, with a significant increase in renal MCs, leading to renal fibrosis, mitochondrial structural disorders, and oxidative stress damage. The administration of the MCs membrane stabilizer, sodium cromoglycate (SCG), decreased the expression of SCF/c-kit, reduced the expression of α-SMA, MMP2, and inhibited the TGF-ß1/Smad2/3 pathway, thereby alleviating renal fibrosis. Additionally, SCG reduced renal oxidative stress and mitigated mitochondrial structural damage by inhibiting Ang II production and increasing renal GSH, GSH-Px, and GR levels. Collectively, the recruitment of MCs, activation of the TGF-ß1/Smad2/3 pathway, and Ang II production drive renal oxidative stress, ultimately promoting the progression of renal fibrosis in hyperuricemic rats.


Asunto(s)
Hiperuricemia , Enfermedades Renales , Ratas , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Hiperuricemia/metabolismo , Mastocitos/metabolismo , Transducción de Señal , Enfermedades Renales/metabolismo , Riñón/metabolismo , Fibrosis , Estrés Oxidativo
5.
J Biochem Mol Toxicol ; 36(6): e23037, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35293083

RESUMEN

Lung cancer has high mortality and incidence rates in which non-small cell lung cancer (NSCLC) is the primary type of lung cancer that accounts for about 80%-85% of total patients. It has been demonstrated that microRNAs (miRNAs) are critical in the incidence and progression of tumors, while the role and inner mechanism of miR-200a-3p, one type of essential miRNAs, in NSCLC have yet to be revealed. Herein, we investigated the in vitro and vivo pro-/antiproliferative influence of miR-200a-3p on NSCLC cells and utilized bioinformatic programs to further predict the SOX17 gene as miR-200a-3p's potential target. A double luciferase reporter gene experiment was performed to confirm that miR-200a-3p interacts with the SOX17 3'-UTR region specifically. On the basis of the results of Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR), miR-200a-3p impacted the posttranscriptional levels of SOX17 rather than influencing its mRNA expression. In the end, we found that overexpressed SOX17 can reverse miR-200a-3p's impact on NSCLC cell proliferation and metastasis. Therefore, this study demonstrated that miR-200a-3p influences NSCLC cell proliferation and metastasis by modulating the levels of SOX17.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo
6.
World J Surg Oncol ; 19(1): 54, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608020

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play an important role in tumor occurrence. The role of miR-378a-5p and CDK1 in colorectal cancer (CRC) was investigated in this study. METHODS: Investigation of TCGA database and the detection of miR-378a-5p expression in colorectal cancer pathological tissues and colorectal cancer cell lines were undertaken by using qRT-PCR. We performed cell function experiments (CCK-8 assay, EdU assay, colony formation assay, wound healing assay, transwell assay, cell apoptosis assessment, and cell cycle assessment) and nude mouse tumor formation experiments to evaluate the effects of miR-378a-5p on proliferation, metastasis, and invasion to explore the role of miR-378a-5p in vivo and in vitro. Next, through TCGA database, immunohistochemical staining of pathological tissues, and cell function experiments, the role of the target gene CDK1 of miR-378a-5p was verified by database prediction, and dual luciferase reporter gene experiments in colorectal cancer cells were performed. Finally, whether upregulation of CDK1 restores the inhibitory effect of overexpression of miR-378a-5p on the proliferation of CRC cells was studied by overexpression of CDK1. RESULTS: Bioinformatic analysis showed significant downregulation of miR-378a-5p levels in colorectal cancer (CRC). Cell function experiments and tumor xenograft mouse models confirmed the low expression of miR-378a-5p within CRC tissues, which indicated the tumor suppressive role of miR-378a-5p in CRC. To better explore the regulation of miR-378a-5p in CRC, we predicted and validated cell cycle-dependent protein kinase 1 (CDK1) as the miR-378a-5p target gene and observed that miR-378a-5p suppressed CRC cell proliferation by targeting CDK1. CONCLUSION: The results of this study help to elucidate the mechanism by which miR-378a-5p can be used as a tumor marker to inhibit the growth of colorectal cancer and CDK1, which is related to the prognosis of colorectal cancer patients. MiR-378a-5p inhibits CRC cell proliferation by suppressing CDK1 expression, which may become a possible therapeutic target for treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Animales , Proteína Quinasa CDC2/genética , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , Pronóstico , Proteínas Quinasas
7.
Nano Lett ; 18(11): 6804-6811, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30350653

RESUMEN

Free radicals have emerged as new-type and promising candidates for hypoxic tumor treatment, and further study of their therapeutic mechanism by real-time imaging is of great importance to explore their biomedical applications. Herein, we present a smart free-radical generator AuNC-V057-TPP for hypoxic tumor therapy; the AuNC-V057-TPP not only exhibits good therapeutic effect under both hypoxic and normoxic conditions but also can monitor the release of free radicals in real-time both in vitro and in vivo. What is more, with the mitochondria-targeting ability, the AuNC-V057-TPP is demonstrated with improved antitumor efficacy through enhanced free radical level in mitochondria, which leads to mitochondrial membrane damage and ATP production reduction and finally induces cancer cell apoptosis.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Radicales Libres/metabolismo , Oro , Neoplasias Mamarias Animales , Nanopartículas del Metal , Mitocondrias , Imagen Molecular/métodos , Hipoxia Tumoral , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Oro/química , Oro/farmacología , Neoplasias Mamarias Animales/diagnóstico por imagen , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/terapia , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología
8.
Small ; 14(20): e1800292, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29665292

RESUMEN

This study reports a double-targeting "nanofirework" for tumor-ignited imaging to guide effective tumor-depth photothermal therapy (PTT). Typically, ≈30 nm upconversion nanoparticles (UCNP) are enveloped with a hybrid corona composed of ≈4 nm CuS tethered hyaluronic acid (CuS-HA). The HA corona provides active tumor-targeted functionality together with excellent stability and improved biocompatibility. The dimension of UCNP@CuS-HA is specifically set within the optimal size window for passive tumor-targeting effect, demonstrating significant contributions to both the in vivo prolonged circulation duration and the enhanced size-dependent tumor accumulation compared with ultrasmall CuS nanoparticles. The tumors featuring hyaluronidase (HAase) overexpression could induce the escape of CuS away from UCNP@CuS-HA due to HAase-catalyzed HA degradation, in turn activating the recovery of initially CuS-quenched luminescence of UCNP and also driving the tumor-depth infiltration of ultrasmall CuS for effective PTT. This in vivo transition has proven to be highly dependent on tumor occurrence like a tumor-ignited explosible firework. Together with the double-targeting functionality, the pathology-selective tumor ignition permits precise tumor detection and imaging-guided spatiotemporal control over PTT operation, leading to complete tumor ablation under near infrared (NIR) irradiation. This study offers a new paradigm of utilizing pathological characteristics to design nanotheranostics for precise detection and personalized therapy of tumors.


Asunto(s)
Hipertermia Inducida , Nanofibras/química , Neoplasias/patología , Fototerapia , Animales , Muerte Celular , Cobre/química , Células Hep G2 , Humanos , Ácido Hialurónico/química , Hialuronoglucosaminidasa/metabolismo , Luminiscencia , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células 3T3 NIH , Nanofibras/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Células RAW 264.7 , Esferoides Celulares/patología , Esferoides Celulares/ultraestructura , Sulfuros/química , Temperatura
9.
Small ; 14(50): e1803602, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30370690

RESUMEN

By integrating the characteristics of each therapy modality and material chemistry, a multitherapy modality is put forward: tumor starvation triggered synergism with sensitized chemotherapy. Following starvation-induced amplification of pathological abnormalities in tumors, chemotherapy is arranged to be locally activated and accurately reinforced to perfect multitherapy synergism from spatial and temporal perspectives. To this end, glucose oxidase (GOD) and a hypoxic prodrug of tirapazamine (TPZ) are loaded in acidity-decomposable calcium carbonate (CaCO3 ) nanoparticles concurrently tethered by hyaluronic acid. This hybrid nanotherapeutic shows a strong tendency to accumulate in tumors postinjection due to the cooperation between passive and active targeting mechanisms. The GOD-driven oxidation reaction deprives tumors of glucose for starvation therapy and concomitantly induces tumorous abnormality amplifications including elevated acidity and exacerbated hypoxia. Programmatically, the acidity amplification causes CaCO3 decomposition, offering not only spatial control over the liberation of embedded TPZ just within tumors but also the temporal control over timely chemotherapy initiation to match the occurrence of hypoxia amplification and thus benefiting perfect synergism between starvation therapy and chemotherapy.


Asunto(s)
Antineoplásicos/química , Carbonato de Calcio/química , Nanopartículas/química , Profármacos/química , Tirapazamina/química , Glucosa Oxidasa/metabolismo , Ácido Hialurónico/química
10.
Biomacromolecules ; 19(6): 2043-2052, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29584410

RESUMEN

Biomimetic nanoengineering built through integrating the specific cell membrane with artificially synthetic nanomedicines represents one of the most promising directions for the actualization of personalized therapy. For addressing the technical hurdle against the development of this biomimetic technology, the present report describes the in-depth exploration and optimization over each critical preparation step, including establishment of a nanoparticle-stabilized dispersion system, cargo loading, membrane coating, and product isolation. Magnetic iron oxide nanoparticles loaded with DOX is used as a typical model for the coating with cancer cell membranes, providing compact DNP@CCCM nanostructure well-characterized by various techniques. Furthermore, the feasibility of this optimized approach in constructing biomimetic membrane-coated nanomedicines has been validated on the basis of the remarkably improved biofunctions, such as the targetability, magnetic property, hemolysis risk, macrophage evasion, in vitro cytotoxicity, in vivo circulation duration, and in vivo principal component analysis postinjection. We hope this study regarding technique optimization will prompt the advancement of biomembrane-camouflaged nanoparticles as a newly emerging biomimetic technology.


Asunto(s)
Antibióticos Antineoplásicos/farmacocinética , Membrana Celular/química , Nanopartículas de Magnetita/química , Nanomedicina/métodos , Animales , Antibióticos Antineoplásicos/administración & dosificación , Materiales Biomiméticos/química , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Estabilidad de Medicamentos , Femenino , Células HeLa , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Conejos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Nano Lett ; 16(9): 5895-901, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27513184

RESUMEN

The ultimate goal in cancer therapy and diagnosis is to achieve highly specific targeting to cancer cells. Coated with the source cancer cell membrane specifically derived from the homologous tumors, the nanoparticles are identified with the self-recognition internalization by the source cancer cell lines in vitro and the highly tumor-selective targeting "homing" to the homologous tumor in vivo even in the competition of another heterologous tumor. As the result, MNP@DOX@CCCM nanovehicle showed strong potency for tumor treatment in vivo and the MR imaging. This bioinspired strategy shows great potential for precise therapy/diagnosis of various tumors merely by adjusting the cell membrane source accordingly on the nanoparticle surface.


Asunto(s)
Membrana Celular/química , Sistemas de Liberación de Medicamentos , Nanopartículas , Animales , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Compuestos Férricos/química , Humanos , Imagen por Resonancia Magnética , Magnetismo , Ratones , Neoplasias/tratamiento farmacológico
12.
Exp Ther Med ; 27(1): 37, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38125360

RESUMEN

Spinal cord injury (SCI) is a devastating event that often leads to severe disability, and effective treatments for SCI are currently limited. The present study investigated the potential effects and specific mechanisms of melatonin treatment in SCI. Mice were divided into Sham (Sham), Vehicle (Veh), Melatonin (Mel), and Melatonin + 4-phenyl-2-propionamidotetralin (4P-PDOT) (Mel + 4PP) groups based on randomized allocation. The expression of MT2 and the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Keap1 signaling pathways were examined, along with oxidative stress indicators, inflammatory factors and GFAP-positive cells near the injury site. The polarization of microglial cells in different inflammatory microenvironments was also observed. Cell survival, motor function recovery and spinal cord tissue morphology were assessed using staining and Basso Mouse Scale scores. On day 7 after SCI, the results revealed that melatonin treatment increased MT2 protein expression and activated the Nrf2/Keap1 signaling pathway. It also reduced GFAP-positive cells, mitigated oxidative stress, and suppressed inflammatory responses around the injury site. Furthermore, melatonin treatment promoted the polarization of microglia toward the M2 type, increased the number of neutrophil-positive cells, and modulated the transcription of Bax and Bcl2 in the injured spinal cord. Melatonin treatment alleviated the severity of spinal injuries and facilitated functional recovery in mice with SCI. Notably, blocking MT2 with 4P-PDOT partially reversed the neuroprotective effects of melatonin in SCI, indicating that the activation of the MT2/Nrf2/Keap1 signaling pathway contributes to the neuroprotective properties of melatonin in SCI. The therapeutic and translational potentials of melatonin in SCI warrant further investigation.

13.
J Coll Physicians Surg Pak ; 34(8): 936-941, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113513

RESUMEN

OBJECTIVE: To systematically identify early biomarkers of cisplatin-induced acute kidney injury (AKI) in rats. STUDY DESIGN: An experimental study. Place and Duration of the Study: Experimental Animal Laboratory of Lanzhou University, Gansu, China, and the Department of Pharmacy, The First Hospital of Lanzhou University, Gansu, China, from July 2022 to October 2023. METHODOLOGY: In this study, an AKI model was established by continuously injecting cisplatin into rats at a dose of 1 mg/kg once a day for control group and for 2, 3, 4, and 5 days to other four groups, respectively. Subsequently, rat plasma samples were collected for metabolomics analysis to identify early differentiated metabolites in the plasma prior to creatinine elevation. Furthermore, accurate HPLC-MS/MS methods were developed to validate the biomarker variation in other AKI models. RESULTS: The occurrence of time-dependent renal cortical injury and significant alterations of creatinine (Cr) concentration were observed on day-4 and 5, which demonstrated successful model construction. Sixty-six compounds changed on Day-2 while 61 compounds changed on Day-3. Eleven compounds with variable importance in projection (VIP) >1.5 and false discover rate (FDR) <0.2 were selected and identified by HPLC-MS/MS. Among these, N-acetylglutamine and citramalic acid changed earlier than serum creatinine (sCr) in the AKI model. CONCLUSION: N-acetylglutamine and citramalic acid may serve as early biomarker of cisplatin-induced AKI. KEY WORDS: Acute kidney injury, Biomarker, Cisplatin, Metabolomics, LC-MS/MS, Rats.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , Cisplatino , Metabolómica , Animales , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/sangre , Ratas , Biomarcadores/sangre , Metabolómica/métodos , Masculino , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Antineoplásicos/efectos adversos , Antineoplásicos/toxicidad , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Creatinina/sangre
14.
Toxicol Lett ; 394: 76-91, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428544

RESUMEN

Aristolochic acid I (AAI), a component of aristolochic acids, can be converted to the toxic metabolite Aristolactam I (ALI) in vivo which forms aristolactam-nitrenium with delocalized positive charges. It is widely accepted that delocalized lipophilic cations can accumulate in mitochondria due to the highly negatively charged microenvironment of the mitochondrial matrix, but the uptake of ALI by mitochondria is not known. In this study, the cell uptake and mitochondrial localization of ALI, and its subsequent impact on mitochondrial function were investigated. Results show that ALI can rapidly penetrate HK-2 cells without relying on organic anion transporters 1/3 (OAT1/3). The cellular distribution of ALI was found to align with the observed distribution of a mitochondria-selective dye in HK-2 cells. Furthermore, the cell uptake and mitochondrial uptake of ALI were both inhibited by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone, which induces mitochondrial membrane depolarization. These results suggest that ALI is selectively taken up by mitochondria. Consequently, mitochondrial dysfunction was observed after treatment with ALI. It should be noted that inhibiting OAT1/3 could result in an increased exposure of ALI in vivo and cause more seriously nephrotoxicity. In conclusion, this research reports the mitochondrial uptake of ALI and provides new insight on potential strategies for protection against AAI-induced nephrotoxicity.


Asunto(s)
Ácidos Aristolóquicos , Ácidos Aristolóquicos/toxicidad , Mitocondrias
15.
Food Chem Toxicol ; 192: 114949, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182635

RESUMEN

Acute kidney injury (AKI) is a worldwide public health problem with high morbidity and mortality. Cisplatin is a widely used chemotherapeutic agent for treating solid tumors, but the induction of AKI restricts its clinical application. In this study, the effect of cisplatin on the expression of organic ion transporters was investigated through in vivo and in vitro experiments. Targeted metabolomics techniques were used to measure the levels of selected endogenous substances in serum. Transmission electron microscopy was used to observe the microstructure of renal tubular epithelial cells. Our results show that the toxicity of cisplatin on HK-2 cells or HEK-293 cells was time- and dose-dependent. Administration of cisplatin decreased the expression of OAT1/3 and OCT2 and increased the expression of MRP2/4. Mitochondrial damage induced by cisplatin lead to renal tubular epithelial cell injury. In addition, administration of cisplatin resulted in significant changes in endogenous substance levels in serum, including amino acids, carnitine, and fatty acids. These serum amino acids and metabolites (α-aminobutyric acid, proline, and alanine), carnitines (tradecanoylcarnitine, hexanylcarnitine, octanoylcarnitine, 2-methylbutyroylcarnitine, palmitoylcarnitine, and linoleylcarnitine) and fatty acids (9E-tetradecenoic acid) represent endogenous substances with diagnostic potential for cisplatin-induced AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Cisplatino/toxicidad , Humanos , Animales , Células HEK293 , Masculino , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Antineoplásicos/toxicidad , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Transportador 2 de Cátion Orgánico/metabolismo , Transportador 2 de Cátion Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Carnitina/análogos & derivados , Carnitina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
16.
CNS Neurosci Ther ; 30(3): e14593, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38528832

RESUMEN

BACKGROUND: Inflammation can worsen spinal cord injury (SCI), with dendritic cells (DCs) playing a crucial role in the inflammatory response. They mediate T lymphocyte differentiation, activate microglia, and release cytokines like NT-3. Moreover, DCs can promote neural stem cell survival and guide them toward neuron differentiation, positively impacting SCI outcomes. OBJECTIVE: This review aims to summarize the role of DCs in SCI-related inflammation and identify potential therapeutic targets for treating SCI. METHODS: Literature in PubMed and Web of Science was reviewed using critical terms related to DCs and SCI. RESULTS: The study indicates that DCs can activate microglia and astrocytes, promote T-cell differentiation, increase neurotrophin release at the injury site, and subsequently reduce secondary brain injury and enhance functional recovery in the spinal cord. CONCLUSIONS: This review highlights the repair mechanisms of DCs and their potential therapeutic potential for SCI.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Humanos , Médula Espinal , Microglía , Inflamación/complicaciones , Células Dendríticas
17.
CNS Neurosci Ther ; 30(6): e14781, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887195

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) and spinal cord injury (SCI) are acquired injuries to the central nervous system (CNS) caused by external forces that cause temporary or permanent sensory and motor impairments and the potential for long-term disability or even death. These conditions currently lack effective treatments and impose substantial physical, social, and economic burdens on millions of people and families worldwide. TBI and SCI involve intricate pathological mechanisms, and the inflammatory response contributes significantly to secondary injury in TBI and SCI. It plays a crucial role in prolonging the post-CNS trauma period and becomes a focal point for a potential therapeutic intervention. Previous research on the inflammatory response has traditionally concentrated on glial cells, such as astrocytes and microglia. However, increasing evidence highlights the crucial involvement of lymphocytes in the inflammatory response to CNS injury, particularly CD8+ T cells and NK cells, along with their downstream XCL1-XCR1 axis. OBJECTIVE: This review aims to provide an overview of the role of the XCL1-XCR1 axis and the T-cell response in inflammation caused by TBI and SCI and identify potential targets for therapy. METHODS: We conducted a comprehensive search of PubMed and Web of Science using relevant keywords related to the XCL1-XCR1 axis, T-cell response, TBI, and SCI. RESULTS: This study examines the upstream and downstream pathways involved in inflammation caused by TBI and SCI, including interleukin-15 (IL-15), interleukin-12 (IL-12), CD8+ T cells, CD4+ T cells, NK cells, XCL1, XCR1+ dendritic cells, interferon-gamma (IFN-γ), helper T0 cells (Th0 cells), helper T1 cells (Th1 cells), and helper T17 cells (Th17 cells). We describe their proinflammatory effect in TBI and SCI. CONCLUSIONS: The findings suggest that the XCL1-XCR1 axis and the T-cell response have great potential for preclinical investigations and treatments for TBI and SCI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Quimiocinas C , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/patología , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Animales , Quimiocinas C/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Enfermedades Neuroinflamatorias/inmunología
18.
Toxicol Sci ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041788

RESUMEN

Early identification of drug-induced acute kidney injury (AKI) is essential to prevent renal damage. The renal tubules are typically the first to exhibit damage, frequently accompanied by changes in renal tubular transporters. With this in mind, we have identified an endogenous substrate of the renal tubular transporters that may serve as a biomarker for early detection of drug-induced AKI. Using gentamicin (GEN) and vancomycin (VCA)-induced AKI models, we found that traumatic acid (TA), an end metabolite, was rapidly increased in both AKI models. TA, a highly albumin-bound compound (96%-100%), could not be filtered by the glomerulus and was predominantly eliminated by renal tubules via the OAT1, OAT3, OATP4C1, and P-gp transporters. Importantly, there is a correlation between elevated serum TA levels and reduced OAT1 and OAT3 levels. A clinical study showed that serum TA levels rose before an increase in serum creatinine (SCr) in thirteen out of twenty AKI patients in an intensive care unit (ICU) setting. In addition, there was a notable rise in TA levels in the serum of individuals suffering from nephrotic syndrome, chronic renal failure, and acute renal failure. These results indicate that the decrease in renal tubular transporter expression during drug-induced AKI leads to an increase in the serum TA level, and the change in TA may serve as a monitor for renal tubular injury.

19.
Biomater Sci ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39219371

RESUMEN

Metabolic disorders of cancer cells create opportunities for metabolic interventions aimed at selectively eliminating cancer cells. Nevertheless, achieving this goal is challenging due to cellular plasticity and metabolic heterogeneity of cancer cells. This study presents a dual-drug-loaded, macrophage membrane-coated polymeric nanovesicle designed to reprogram cancer metabolism with high specificity through integrated extracellular and intracellular interventions. This nanoformulation can target cancer cells and largely reduce their glucose intake, while the fate of intracellular glucose internalized otherwise is redirected at the specially introduced oxidation reaction instead of inherent cancer glycolysis. Meanwhile, it inhibits cellular citrate intake, further reinforcing metabolic intervention. Furthermore, the nanoformulation causes not only H2O2 production, but also NADPH down-regulation, intensifying redox damage to cancer cells. Consequently, this nanoformulation displays highly selective toxicity to cancer cells and minimal harm to normal cells mainly due to metabolic vulnerability of the former. Once administered into tumor-bearing mice, this nanoformulation is found to induce the transformation of pro-tumor tumor associated macrophages into the tumor-suppressive phenotype and completely inhibit tumor growth with favourable biosafety.

20.
Mol Immunol ; 170: 60-75, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626622

RESUMEN

Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-ß1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.


Asunto(s)
Tetracloruro de Carbono , Cromolin Sódico , Cirrosis Hepática , Hígado , Mastocitos , Animales , Mastocitos/metabolismo , Mastocitos/inmunología , Mastocitos/efectos de los fármacos , Tetracloruro de Carbono/toxicidad , Ratas , Masculino , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/inmunología , Cirrosis Hepática/inducido químicamente , Cromolin Sódico/farmacología , Hígado/patología , Hígado/metabolismo , Hígado/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Ratas Sprague-Dawley , Cetotifen/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA