RESUMEN
Enzyme-assisted ultrasonic extraction (EAUE) was utilized and optimized for extracting polysaccharides from Schizochytrium limacinum meal (SLMPs) via the response surface methodology. The optimal EAUE conditions were determined as follows: enzyme concentration at 5.18%, ultrasonic temperature at 53 °C, ultrasonic duration of 40 min, ultrasonic power at 60 W, and a liquid-to-material ratio of 34 mL/g, achieving a polysaccharide extraction yield of 11.86 ± 0.61%. The purified polysaccharide component, SLMP1-1, isolated using DEAE Sepharose Fast Flow and Sephadex G-100 columns, exhibited potent antioxidant activity. SLMP1-1, with a molecular weight of 25.5 kDa, comprises glucose, mannose, arabinose, and galactose in a molar ratio of 16.39:14.75:1:693.03. 1H NMR analysis revealed the α configuration of SLMP1-1. Antioxidant assessments, including DPPH, ABTS, and ferric ion reduction assays, were detected with inhibitory values at 21.82-82.98%, 38.21-98.46%, and 3.30-20.30% at 0.2-1.0 mg/mL. This confirmed the effective antioxidant capacity of SLMP1-1, which is notably enhanced post oral and gastric digestion. The findings suggest that polysaccharides extracted from Schizochytrium limacinum meal hold significant promise as natural antioxidants.
RESUMEN
Light therapy is an effective approach for the treatment of a variety of challenging dermatological conditions. In contrast to existing methods involving high doses and large areas of illumination, alternative strategies based on wearable designs that utilize a low light dose over an extended period provide a precise and convenient treatment. In this study, we present a battery-free, skin-integrated optoelectronic patch that incorporates a coil-powered circuit, an array of microscale violet and red light emitting diodes (LEDs), and polymer microneedles (MNs) loaded with 5-aminolevulinic acid (5-ALA). These polymer MNs, based on the biodegradable composite materials of polyvinyl alcohol (PVA) and hyaluronic acid (HA), serve as light waveguides for optical access and a medium for drug release into deeper skin layers. Unlike conventional clinical photomedical appliances with a rigid and fixed light source, this flexible design allows for a conformable light source that can be applied directly to the skin. In animal models with bacterial-infected wounds, the experimental group with the combination treatment of metronomic photodynamic and light therapies reduced 2.48 log10 CFU mL-1 in bactericidal level compared to the control group, indicating an effective anti-infective response. Furthermore, post-treatment analysis revealed the activation of proregenerative genes in monocyte and macrophage cell populations, suggesting enhanced tissue regeneration, neovascularization, and dermal recovery. Overall, this optoelectronic patch design broadens the scope for targeting deep skin lesions, and provides an alternative with the functionality of standard clinical light therapy methods.
Asunto(s)
Fotoquimioterapia , Animales , Fotoquimioterapia/métodos , Ratones , Humanos , Alcohol Polivinílico/química , Ácido Aminolevulínico/uso terapéutico , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/química , Ácido Aminolevulínico/administración & dosificación , Técnicas Biosensibles , Ácido Hialurónico/química , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Infección de Heridas/terapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Piel/efectos de la radiación , Piel/microbiología , Diseño de EquipoRESUMEN
Thin-film microscale light-emitting diodes (LEDs) are efficient light sources and their integrated applications offer robust capabilities and potential strategies in biomedical science. By leveraging innovations in the design of optoelectronic semiconductor structures, advanced fabrication techniques, biocompatible encapsulation, remote control circuits, wireless power supply strategies, etc., these emerging applications provide implantable probes that differ from conventional tethering techniques such as optical fibers. This review introduces the recent advancements of thin-film microscale LEDs for biomedical applications, covering the device lift-off and transfer printing fabrication processes and the representative biomedical applications for light stimulation, therapy, and photometric biosensing. Wireless power delivery systems have been outlined and discussed to facilitate the operation of implantable probes. With such wireless, battery-free, and minimally invasive implantable light-source probes, these biomedical applications offer excellent opportunities and instruments for both biomedical sciences research and clinical diagnosis and therapy.
RESUMEN
Near-infrared spectroscopy has been widely used to characterize the chemical composition of tobacco because it is fast, economical, and nondestructive. However, few predictive models perform ideally when applied to large spectral libraries of tobacco and its various chemical indicators. In this study, the just-in-time learning-integrated partial least-squares (JIT-PLS) modeling strategy was applied for the first time to quantitatively analyze 71 chemical components in Chinese tobacco. Approximately 18000 tobacco samples from China were analyzed to find appropriately similar measurements and propose suitable and flexible similar subsets from the calibration for each test sample. In total, 879 representative aged tobacco leaf samples and 816 cigarette samples were used as external instances to evaluate the practical predicting ability of the proposed method. The most suitable similar subsets for each test sample could be selected by limiting the Euclidean distance and number of similar subsets to 0-3.0 × 10-9 and 10-300, respectively. The majority of the JIT-PLS models performed significantly better than traditional PLS models. Specifically, using JIT-PLS instead of traditional PLS models increased the R 2 values from 0.347-0.984 to 0.763-0.996, and from 0.179-0.981 to 0.506-0.989 for the prediction of 67 and 71 components in aged tobacco leaf and cigarette samples, respectively. Good prediction ability was demonstrated for routine chemical components, polyphenolic compounds, organic acids, and other compounds, with the mean ratios of prediction to deviation (RPDmean) being 7.74, 4.39, 4.05, and 5.48, respectively). The proposed methodology could simultaneously determine 67 major components in large and complicated tobacco spectral libraries with high precision and accuracy, which will assist tobacco and cigarette quality control in collecting as well as processing stages.