Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17072, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273547

RESUMEN

Tropical and subtropical forests play a crucial role in global carbon (C) pools, and their responses to warming can significantly impact C-climate feedback and predictions of future global warming. Despite earth system models projecting reductions in land C storage with warming, the magnitude of this response varies greatly between models, particularly in tropical and subtropical regions. Here, we conducted a field ecosystem-level warming experiment in a subtropical forest in southern China, by translocating mesocosms (ecosystem composed of soils and plants) across 600 m elevation gradients with temperature gradients of 2.1°C (moderate warming), to explore the response of ecosystem C dynamics of the subtropical forest to continuous 6-year warming. Compared with the control, the ecosystem C stock decreased by 3.8% under the first year of 2.1°C warming; but increased by 13.4% by the sixth year of 2.1°C warming. The increased ecosystem C stock by the sixth year of warming was mainly attributed to a combination of sustained increased plant C stock due to the maintenance of a high plant growth rate and unchanged soil C stock. The unchanged soil C stock was driven by compensating and offsetting thermal adaptation of soil microorganisms (unresponsive soil respiration and enzyme activity, and more stable microbial community), increased plant C input, and inhibitory C loss (decreased C leaching and inhibited temperature sensitivity of soil respiration) from soil drying. These results suggest that the humid subtropical forest C pool would not necessarily diminish consistently under future long-term warming. We highlight that differential and asynchronous responses of plant and soil C processes over relatively long-term periods should be considered when predicting the effects of climate warming on ecosystem C dynamics of subtropical forests.


Asunto(s)
Secuestro de Carbono , Ecosistema , Cambio Climático , Bosques , Carbono , Suelo
2.
J Environ Manage ; 351: 119885, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147772

RESUMEN

Wildfires and post-fire management exert profound effects on soil properties and microbial communities in forest ecosystems. Understanding microbial community recovery from fire and what the best post-fire management should be is very important but needs to be sufficiently studied. In light of these gaps in our understanding, this study aimed to assess the short-term effects of wildfire and post-fire management on both bacteria and fungi community composition, diversity, structure, and co-occurrence networks, and to identify the principal determinants of soil processes influencing the restoration of these communities. Specifically, we investigated soil bacterial and fungal community composition, diversity, structure, and co-occurrence networks in lower subtropical forests during a short-term (<3 years) post-fire recovery period at four main sites in Guangdong Province, southern China. Our results revealed significant effects of wildfires on fungal community composition, diversity, and co-occurrence patterns. Network analysis indicated reduced bacterial network complexity and connectivity post-fire, while the same features were enhanced in fungal networks. However, post-fire management effects on microbial communities were negligible. Bacterial diversity correlated positively with soil microbial biomass nitrogen, soil organic carbon, and soil total nitrogen. Conversely, based on the best random forest model, fungal community dynamics were negatively linked to nitrate-nitrogen and soil water content. Spearman's correlation analysis suggested positive associations between bacterial networks and soil factors, whereas fungal networks exhibited predominantly negative associations. This study elucidates the pivotal role of post-fire management in shaping ecological outcomes. Additionally, it accentuates the discernible distinctions between bacterial and fungal responses to fire throughout a short-term recovery period. These findings contribute novel insights that bear significance in evaluating the efficacy of environmental management strategies.


Asunto(s)
Incendios , Microbiota , Ecosistema , Suelo/química , Carbono , Bacterias , Nitrógeno/análisis , Microbiología del Suelo
3.
Sci Total Environ ; 914: 169899, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184245

RESUMEN

The detection and attribution of biodiversity change is of great scientific interest and central to policy effects aimed at meeting biodiversity targets. Yet, how such a diverse climate scenarios influence forest biodiversity and composition dynamics remains unclear, particularly in high diversity systems of subtropical forests. Here we used data collected from the permanent sample plot spanning 26 years in an old-growth subtropical forest. Combining various climatic events (extreme drought, subsequent drought, warming, and windstorm), we analyzed long-term dynamics in multiple metrics: richness, turnover, density, abundance, reordering and stability. We did not observe consistent and directional trends in species richness under various climatic scenarios. Still, drought and windstorm events either reduced species gains or increased species loss, ultimately increased species turnover. Tree density increased significantly over time as a result of rapid increase in smaller individuals due to mortality in larger trees. Climate events caused rapid changes in dominant populations due to a handful of species undergoing strong increases or declines in abundance over time simultaneously. Species abundance composition underwent significant changes, particularly in the presence of drought and windstorm events. High variance ratio and species synchrony weaken community stability under various climate stress. Our study demonstrates that all processes underlying forest community composition changes often occur simultaneously and are equally affected by climate events, necessitating a holistic approach to quantifying community changes. By recognizing the interconnected nature of these processes, future research should accelerate comprehensive understanding and predicting of how forest vegetation responds to global climate change.


Asunto(s)
Cambio Climático , Bosques , Humanos , Biodiversidad , Árboles , Sequías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA