Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 272: 116060, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38310825

RESUMEN

The occurrence of hand, foot, and mouth disease (HFMD) is closely related to meteorological factors. However, location-specific characteristics, such as persistent air pollution, may increase the complexity of the impact of meteorological factors on HFMD, and studies across different areas and populations are largely lacking. In this study, a two-stage multisite time-series analysis was conducted using data from 16 cities in Shandong Province from 2015 to 2019. In the first stage, we obtained the cumulative exposure-response curves of meteorological factors and the number of HFMD cases for each city. In the second stage, we merged the estimations from the first stage and included city-specific air pollution variables to identify significant effect modifiers and how they modified the short-term relationship between HFMD and meteorological factors. High concentrations of air pollutants may reduce the risk effects of high average temperature on HFMD and lead to a distinct peak in the cumulative exposure-response curve, while lower concentrations may increase the risk effects of high relative humidity. Furthermore, the effects of average wind speed on HFMD were different at different levels of air pollution. The differences in modification effects between subgroups were mainly manifested in the diversity and quantity of significant modifiers. The modification effects of long-term air pollution levels on the relationship between sunshine hours and HFMD may vary significantly depending on geographical location. The people in age<3 and male groups were more susceptible to long-term air pollution. These findings contribute to a deepening understanding of the relationship between meteorological factors and HFMD and provide evidence for relevant public health decision-making.


Asunto(s)
Contaminación del Aire , Enfermedad de Boca, Mano y Pie , Humanos , Masculino , Preescolar , Enfermedad de Boca, Mano y Pie/epidemiología , Dinámicas no Lineales , Incidencia , Temperatura , Contaminación del Aire/efectos adversos , China/epidemiología , Conceptos Meteorológicos
2.
Stroke ; 54(5): 1357-1366, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36912139

RESUMEN

BACKGROUND: Cerebral venous thrombosis (CVT) is a rare cerebrovascular disease. Routine brain magnetic resonance imaging is commonly used to diagnose CVT. This study aimed to develop and evaluate a novel deep learning (DL) algorithm for detecting CVT using routine brain magnetic resonance imaging. METHODS: Routine brain magnetic resonance imaging, including T1-weighted, T2-weighted, and fluid-attenuated inversion recovery images of patients suspected of CVT from April 2014 through December 2019 who were enrolled from a CVT registry, were collected. The images were divided into 2 data sets: a development set and a test set. Different DL algorithms were constructed in the development set using 5-fold cross-validation. Four radiologists with various levels of expertise independently read the images and performed diagnosis within the test set. The diagnostic performance on per-patient and per-segment diagnosis levels of the DL algorithms and radiologist's assessment were evaluated and compared. RESULTS: A total of 392 patients, including 294 patients with CVT (37±14 years, 151 women) and 98 patients without CVT (42±15 years, 65 women), were enrolled. Of these, 100 patients (50 CVT and 50 non-CVT) were randomly assigned to the test set, and the other 292 patients comprised the development set. In the test set, the optimal DL algorithm (multisequence multitask deep learning algorithm) achieved an area under the curve of 0.96, with a sensitivity of 96% (48/50) and a specificity of 88% (44/50) on per-patient diagnosis level, as well as a sensitivity of 88% (129/146) and a specificity of 80% (521/654) on per-segment diagnosis level. Compared with 4 radiologists, multisequence multitask deep learning algorithm showed higher sensitivity both on per-patient (all P<0.05) and per-segment diagnosis levels (all P<0.001). CONCLUSIONS: The CVT-detected DL algorithm herein improved diagnostic performance of routine brain magnetic resonance imaging, with high sensitivity and specificity, which provides a promising approach for detecting CVT.


Asunto(s)
Aprendizaje Profundo , Trombosis Intracraneal , Trombosis de la Vena , Humanos , Femenino , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Trombosis Intracraneal/diagnóstico , Algoritmos , Trombosis de la Vena/diagnóstico
3.
Eur Radiol ; 33(4): 2279-2288, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36424500

RESUMEN

OBJECTIVES: Evaluation and follow-up of idiopathic pulmonary fibrosis (IPF) mainly rely on high-resolution computed tomography (HRCT) and pulmonary function tests (PFTs). The elastic registration technique can quantitatively assess lung shrinkage. We aimed to investigate the correlation between lung shrinkage and morphological and functional deterioration in IPF. METHODS: Patients with IPF who underwent at least two HRCT scans and PFTs were retrospectively included. Elastic registration was performed on the baseline and follow-up HRCTs to obtain deformation maps of the whole lung. Jacobian determinants were calculated from the deformation fields and after logarithm transformation, log_jac values were represented on color maps to describe morphological deterioration, and to assess the correlation between log_jac values and PFTs. RESULTS: A total of 69 patients with IPF (male 66) were included. Jacobian maps demonstrated constriction of the lung parenchyma marked at the lung base in patients who were deteriorated on visual and PFT assessment. The log_jac values were significantly reduced in the deteriorated patients compared to the stable patients. Mean log_jac values showed positive correlation with baseline percentage of predicted vital capacity (VC%) (r = 0.394, p < 0.05) and percentage of predicted forced vital capacity (FVC%) (r = 0.395, p < 0.05). Additionally, the mean log_jac values were positively correlated with pulmonary vascular volume (r = 0.438, p < 0.01) and the number of pulmonary vascular branches (r = 0.326, p < 0.01). CONCLUSIONS: Elastic registration between baseline and follow-up HRCT was helpful to quantitatively assess the morphological deterioration of lung shrinkage in IPF, and the quantitative indicator log_jac values were significantly correlated with PFTs. KEY POINTS: • The elastic registration on HRCT was helpful to quantitatively assess the deterioration of IPF. • Jacobian logarithm was significantly reduced in deteriorated patients and mean log_jac values were correlated with PFTs. • The mean log_jac values were related to the changes of pulmonary vascular volume and the number of vascular branches.


Asunto(s)
Fibrosis Pulmonar Idiopática , Pulmón , Humanos , Masculino , Estudios Retrospectivos , Pulmón/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Capacidad Vital
4.
Eur Radiol ; 32(4): 2693-2703, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34807270

RESUMEN

OBJECTIVES: To develop and validate a general radiomics nomogram capable of identifying EGFR mutation status in non-small cell lung cancer (NSCLC) patients, regardless of patient with either contrast-enhanced CT (CE-CT) or non-contrast-enhanced CT (NE-CT). METHODS: A total of 412 NSCLC patients were retrospectively enrolled in this study. Patients' radiomics features not significantly different between NE-CT and CE-CT were defined as general features, and were further used to construct the general radiomics signature. Fivefold cross-validation was used to select the best machine learning algorithm. Finally, a general radiomics nomogram was developed using general radiomics signature, and clinical and radiological characteristics. Two groups of data collected at different time periods were used as two test sets to access the discrimination and clinical usefulness. Area under the receiver operating characteristic curve (ROC-AUC) was applied to performance evaluation. RESULT: The general radiomics signature yielded the highest AUC of 0.756 and 0.739 in the two test sets, respectively. When applying to same type of CT, the performance of general radiomics signature was always similar to or higher than that of models built using only NE-CT or CE-CT features. The general radiomics nomogram combining general radiomics signature, smoking history, emphysema, and ILD achieved higher performance whether applying to NE-CT or CE-CT (test set 1, AUC = 0.833 and 0.842; test set 2, AUC = 0.839 and 0.850). CONCLUSIONS: Our work demonstrated that using general features to construct radiomics signature and nomogram could help identify EGFR mutation status of NSCLC patients and expand its scope of clinical application. KEY POINTS: • General features were proposed to construct general radiomics signature using different types of CT of different patients at the same time to identify EGFR mutation status of NSCLC patients. • The general radiomics nomogram based on general radiomics signature, and clinical and radiological characteristics could identify EGFR mutation status of patients with NSCLC and outperformed the general radiomics signature. • The general radiomics nomogram had a wider scope of clinical application; no matter which of NE-CT and CE-CT the patient has, its EGFR mutation status could be predicted.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Mutación , Nomogramas , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
5.
Eur Radiol ; 31(4): 1831-1842, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33001308

RESUMEN

OBJECTIVE: To explore the application of deep learning in patients with primary osteoporosis, and to develop a fully automatic method based on deep convolutional neural network (DCNN) for vertebral body segmentation and bone mineral density (BMD) calculation in CT images. MATERIALS AND METHODS: A total of 1449 patients were used for experiments and analysis in this retrospective study, who underwent spinal or abdominal CT scans for other indications between March 2018 and May 2020. All data was gathered from three different CT vendors. Among them, 586 cases were used for training, and other 863 cases were used for testing. A fully convolutional neural network, called U-Net, was employed for automated vertebral body segmentation. The manually sketched region of vertebral body was used as the ground truth for comparison. A convolutional neural network, called DenseNet-121, was applied for BMD calculation. The values post-processed by quantitative computed tomography (QCT) were identified as the standards for analysis. RESULTS: Based on the diversity of CT vendors, all testing cases were split into three testing cohorts: Test set 1 (n = 463), test set 2 (n = 200), and test set 3 (n = 200). Automated segmentation correlated well with manual segmentation regarding four lumbar vertebral bodies (L1-L4): the minimum average dice coefficients for three testing sets were 0.823, 0.786, and 0.782, respectively. For testing sets from different vendors, the average BMDs calculated by automated regression showed high correlation (r > 0.98) and agreement with those derived from QCT. CONCLUSIONS: A deep learning-based method could achieve fully automatic identification of osteoporosis, osteopenia, and normal bone mineral density in CT images. KEY POINTS: • Deep learning can perform accurate fully automated segmentation of lumbar vertebral body in CT images. • The average BMDs obtained by deep learning highly correlates with ones derived from QCT. • The deep learning-based method could be helpful for clinicians in opportunistic osteoporosis screening in spinal or abdominal CT scans.


Asunto(s)
Redes Neurales de la Computación , Osteoporosis , Humanos , Tamizaje Masivo , Osteoporosis/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
6.
Eur Radiol ; 31(6): 3815-3825, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33201278

RESUMEN

OBJECTIVE: To develop a convolutional neural network (CNN) model for the automatic detection and classification of rib fractures in actual clinical practice based on cross-modal data (clinical information and CT images). MATERIALS: In this retrospective study, CT images and clinical information (age, sex and medical history) from 1020 participants were collected and divided into a single-centre training set (n = 760; age: 55.8 ± 13.4 years; men: 500), a single-centre testing set (n = 134; age: 53.1 ± 14.3 years; men: 90), and two independent multicentre testing sets from two different hospitals (n = 62, age: 57.97 ± 11.88, men: 41; n = 64, age: 57.40 ± 13.36, men: 35). A Faster Region-based CNN (Faster R-CNN) model was applied to integrate CT images and clinical information. Then, a result merging technique was used to convert 2D inferences into 3D lesion results. The diagnostic performance was assessed on the basis of the receiver operating characteristic (ROC) curve, free-response ROC (fROC) curve, precision, recall (sensitivity), F1-score, and diagnosis time. The classification performance was evaluated in terms of the area under the ROC curve (AUC), sensitivity, and specificity. RESULTS: The CNN model showed improved performance on fresh, healing, and old fractures and yielded good classification performance for all three categories when both clinical information and CT images were used compared to the use of CT images alone. Compared with experienced radiologists, the CNN model achieved higher sensitivity (mean sensitivity: 0.95 > 0.77, 0.89 > 0.61 and 0.80 > 0.55), comparable precision (mean precision: 0.91 > 0.87, 0.84 > 0.77, and 0.95 > 0.70), and a shorter diagnosis time (average reduction of 126.15 s). CONCLUSIONS: A CNN model combining CT images and clinical information can automatically detect and classify rib fractures with good performance and feasibility in actual clinical practice. KEY POINTS: • The developed convolutional neural network (CNN) performed better in fresh, healing, and old fractures and yielded a good classification performance in three categories, if both (clinical information and CT images) were used compared to CT images alone. • The CNN model had a higher sensitivity and matched precision in three categories than experienced radiologists with a shorter diagnosis time in actual clinical practice.


Asunto(s)
Fracturas de las Costillas , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Curva ROC , Estudios Retrospectivos , Fracturas de las Costillas/diagnóstico por imagen , Tomografía Computarizada por Rayos X
7.
Eur Radiol ; 30(6): 3567-3575, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32064559

RESUMEN

OBJECTIVES: To take advantage of the deep learning algorithms to detect and calculate clot burden of acute pulmonary embolism (APE) on computed tomographic pulmonary angiography (CTPA). MATERIALS AND METHODS: The training set in this retrospective study consisted of 590 patients (460 with APE and 130 without APE) who underwent CTPA. A fully deep learning convolutional neural network (DL-CNN), called U-Net, was trained for the segmentation of clot. Additionally, an in-house validation set consisted of 288 patients (186 with APE and 102 without APE). In this study, we set different probability thresholds to test the performance of U-Net for the clot detection and selected sensitivity, specificity, and area under the curve (AUC) as the metrics of performance evaluation. Furthermore, we investigated the relationship between the clot burden assessed by the Qanadli score, Mastora score, and other imaging parameters on CTPA and the clot burden calculated by the DL-CNN model. RESULTS: There was no statistically significant difference in AUCs with the different probability thresholds. When the probability threshold for segmentation was 0.1, the sensitivity and specificity of U-Net in detecting clot respectively were 94.6% and 76.5% while the AUC was 0.926 (95% CI 0.884-0.968). Moreover, this study displayed that the clot burden measured with U-Net was significantly correlated with the Qanadli score (r = 0.819, p < 0.001), Mastora score (r = 0.874, p < 0.001), and right ventricular functional parameters on CTPA. CONCLUSIONS: DL-CNN achieved a high AUC for the detection of pulmonary emboli and can be applied to quantitatively calculate the clot burden of APE patients, which may contribute to reducing the workloads of clinicians. KEY POINTS: • Deep learning can detect APE with a good performance and efficiently calculate the clot burden to reduce the physicians' workload. • Clot burden measured with deep learning highly correlates with Qanadli and Mastora scores of CTPA. • Clot burden measured with deep learning correlates with parameters of right ventricular function on CTPA.


Asunto(s)
Angiografía por Tomografía Computarizada/métodos , Aprendizaje Profundo , Ventrículos Cardíacos/diagnóstico por imagen , Embolia Pulmonar/diagnóstico por imagen , Función Ventricular Derecha , Enfermedad Aguda , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Embolia Pulmonar/fisiopatología , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad
8.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 42(4): 477-484, 2020 Aug 30.
Artículo en Zh | MEDLINE | ID: mdl-32895099

RESUMEN

Objective To make a preliminary pathological classification of lung adenocarcinoma with pure ground glass nodules(pGGN)on CT by using a deep learning model. Methods CT images and pathological data of 219 patients(240 lesions in total)with pGGN on CT and pathologically confirmed adenocarcinoma were collected.According to pathological subtypes,the lesions were divided into non-invasive lung adenocarcinoma group(which included atypical adenomatous hyperplasia and adenocarcinoma in situ and micro-invasive adenocarcinoma)and invasive lung adenocarcinoma group.First,the lesions were outlined and labeled by two young radiologists,and then the labeled data were randomly divided into two datasets:the training set(80%)and the test set(20%).The prediction Results of deep learning were compared with those of two experienced radiologists by using the test dataset. Results The deep learning model achieved high performance in predicting the pathological types(non-invasive and invasive)of pGGN lung adenocarcinoma.The accuracy rate in pGGN diagnosis was 0.8330(95% CI=0.7016-0.9157)for of deep learning model,0.5000(95% CI=0.3639-0.6361)for expert 1,0.5625(95% CI=0.4227-0.6931)for expert 2,and 0.5417(95% CI=0.4029-0.6743)for both two experts.Thus,the accuracy of the deep learning model was significantly higher than those of the experienced radiologists(P=0.002).The intra-observer agreements were good(Kappa values:0.939 and 0.799,respectively).The inter-observer agreement was general(Kappa value:0.667)(P=0.000). Conclusion The deep learning model showed better performance in predicting the pathological types of pGGN lung adenocarcinoma compared with experienced radiologists.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Aprendizaje Profundo , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
9.
J Surg Res ; 195(1): 128-35, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25700936

RESUMEN

BACKGROUND: Oxidative stress and inflammation are implicated in the process of liver regeneration. Lactulose orally administered can be bacterially fermented and induces dramatic amounts of endogenous hydrogen. Hydrogen has been confirmed to have antioxidant and anti-inflammatory properties. This study investigated the potential influence of lactulose administration on liver regeneration. MATERIALS AND METHODS: Antibiotics were used to suppress bacterial fermentation of lactulose, and hydrogen-rich saline was used as a supplementary measure of exogenous hydrogen. The liver regeneration model was produced in Sprague-Dawley rats through 70% partial hepatectomy. RESULTS: Compared with non-lactulose-treated group, lactulose administration remarkably increased the weights of remnant liver and inhibited increases in serum levels of transaminases more notably. In the lactulose-treated group, increases of markers for regeneration, such as proliferating cell nuclear antigen and cyclin D1, were highly elevated. Biochemically, lactulose administration increased liver superoxide dismutase activity and decreased malondialdehyde content. In the lactulose-treated group, excessive increases in inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α, were inhibited significantly. Increased heme oxygenase-1 and superoxide dismutase 2 expression were also observed after lactulose treatment. The antibiotics suppressed the regeneration-promoting effect of lactulose by reducing hydrogen production, whereas supplementing hydrogen by hydrogen-rich saline would get a similar regeneration-promoting effect as lactulose administration. CONCLUSIONS: Lactulose administration accelerates posthepatectomized liver regeneration in rats by inducing hydrogen, which may result from attenuation of the oxidative stress response and excessive inflammatory response.


Asunto(s)
Fármacos Gastrointestinales/uso terapéutico , Hidrógeno/metabolismo , Lactulosa/uso terapéutico , Regeneración Hepática/efectos de los fármacos , Administración Oral , Animales , Fármacos Gastrointestinales/farmacología , Hepatectomía , Lactulosa/farmacología , Hígado/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Distribución Aleatoria , Ratas Sprague-Dawley , Transaminasas/sangre , Factor de Crecimiento Transformador beta1/metabolismo
10.
Chin Med J (Engl) ; 137(6): 676-682, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-37828028

RESUMEN

BACKGROUND: Acute pulmonary embolism (APE) is a fatal cardiovascular disease, yet missed diagnosis and misdiagnosis often occur due to non-specific symptoms and signs. A simple, objective technique will help clinicians make a quick and precise diagnosis. In population studies, machine learning (ML) plays a critical role in characterizing cardiovascular risks, predicting outcomes, and identifying biomarkers. This work sought to develop an ML model for helping APE diagnosis and compare it against current clinical probability assessment models. METHODS: This is a single-center retrospective study. Patients with suspected APE were continuously enrolled and randomly divided into two groups including training and testing sets. A total of 8 ML models, including random forest (RF), Naïve Bayes, decision tree, K-nearest neighbors, logistic regression, multi-layer perceptron, support vector machine, and gradient boosting decision tree were developed based on the training set to diagnose APE. Thereafter, the model with the best diagnostic performance was selected and evaluated against the current clinical assessment strategies, including the Wells score, revised Geneva score, and Years algorithm. Eventually, the ML model was internally validated to assess the diagnostic performance using receiver operating characteristic (ROC) analysis. RESULTS: The ML models were constructed using eight clinical features, including D-dimer, cardiac troponin T (cTNT), arterial oxygen saturation, heart rate, chest pain, lower limb pain, hemoptysis, and chronic heart failure. Among eight ML models, the RF model achieved the best performance with the highest area under the curve (AUC) (AUC = 0.774). Compared to the current clinical assessment strategies, the RF model outperformed the Wells score ( P = 0.030) and was not inferior to any other clinical probability assessment strategy. The AUC of the RF model for diagnosing APE onset in internal validation set was 0.726. CONCLUSIONS: Based on RF algorithm, a novel prediction model was finally constructed for APE diagnosis. When compared to the current clinical assessment strategies, the RF model achieved better diagnostic efficacy and accuracy. Therefore, the ML algorithm can be a useful tool in assisting with the diagnosis of APE.


Asunto(s)
Hominidae , Embolia Pulmonar , Humanos , Animales , Estudios Retrospectivos , Teorema de Bayes , Embolia Pulmonar/diagnóstico , Algoritmos , Enfermedad Aguda
11.
J Imaging Inform Med ; 37(1): 268-279, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343257

RESUMEN

Accurate detection of fibrotic interstitial lung disease (f-ILD) is conducive to early intervention. Our aim was to develop a lung graph-based machine learning model to identify f-ILD. A total of 417 HRCTs from 279 patients with confirmed ILD (156 f-ILD and 123 non-f-ILD) were included in this study. A lung graph-based machine learning model based on HRCT was developed for aiding clinician to diagnose f-ILD. In this approach, local radiomics features were extracted from an automatically generated geometric atlas of the lung and used to build a series of specific lung graph models. Encoding these lung graphs, a lung descriptor was gained and became as a characterization of global radiomics feature distribution to diagnose f-ILD. The Weighted Ensemble model showed the best predictive performance in cross-validation. The classification accuracy of the model was significantly higher than that of the three radiologists at both the CT sequence level and the patient level. At the patient level, the diagnostic accuracy of the model versus radiologists A, B, and C was 0.986 (95% CI 0.959 to 1.000), 0.918 (95% CI 0.849 to 0.973), 0.822 (95% CI 0.726 to 0.904), and 0.904 (95% CI 0.836 to 0.973), respectively. There was a statistically significant difference in AUC values between the model and 3 physicians (p < 0.05). The lung graph-based machine learning model could identify f-ILD, and the diagnostic performance exceeded radiologists which could aid clinicians to assess ILD objectively.

12.
Quant Imaging Med Surg ; 14(1): 86-97, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223063

RESUMEN

Background: Risk stratification for patients with acute pulmonary embolism (APE) is significantly important for treatment and prognosis evaluation. We aimed to develop a novel clot burden score on computed tomography pulmonary angiography (CTPA) based on deep learning (DL) algorithm for risk stratification of APE. Methods: The study retrospectively enrolled patients newly diagnosed with APE in China-Japan Friendship Hospital consecutively. We collected baseline data and CTPA parameters, and calculated four different clot burden scores, including Qanadli score, Mastora score, clot volume and clot ratio. The former two were calculated by two radiologists separately, while clot volume and clot ratio were based on the DL algorithm. The area under the curve (AUC) of four clot burden scores were analyzed. Results: Seventy patients were enrolled, including 17 in high-/intermediate-high risk and 53 in low-/intermediate-low risk. Clot burden was related to the risk stratification of APE. Among four clot burden scores, clot ratio had the highest AUC (0.719, 95% CI: 0.569-0.868) to predict patients with higher risk. In the patients with hemodynamically stable APE, only clot ratio presented statistical difference (P=0.046). Conclusions: Clot ratio is a new imaging marker of clot burden which correlates with the risk stratification of patients with APE. Higher clot ratio may indicate higher risk and acute right ventricular dysfunction in patients with hemodynamically stable status.

13.
Insights Imaging ; 15(1): 17, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38253739

RESUMEN

OBJECTIVE: To assess lung deformation in patients with idiopathic pulmonary fibrosis (IPF) using with elastic registration algorithm applied to three-dimensional ultrashort echo time (3D-UTE) MRI and analyze relationship of lung deformation with the severity of IPF. METHODS: Seventy-six patients with IPF (mean age: 62 ± 6 years) and 62 age- and gender-matched healthy controls (mean age: 58 ± 4 years) were prospectively enrolled. End-inspiration and end-expiration images acquired with a single breath-hold 3D-UTE sequence were registered using elastic registration algorithm. Jacobian determinants were calculated from deformation fields and represented on color maps. Jac-mean (absolute value of the log means of Jacobian determinants) and the Dice similarity coefficient (Dice) were compared between different groups. RESULTS: Compared with healthy controls, the Jac-mean of IPF patients significantly decreased (0.21 ± 0.08 vs. 0.27 ± 0. 07, p < 0.001). Furthermore, the Jac-mean and Dice correlated with the metrics of pulmonary function tests and the composite physiological index. The lung deformation in IPF patients with dyspnea Medical Research Council (MRC) ≥ 3 (Jac-mean: 0.16 ± 0.03; Dice: 0.06 ± 0.02) was significantly lower than MRC1 (Jac-mean: 0. 25 ± 0.03, p < 0.001; Dice: 0.10 ± 0.01, p < 0.001) and MRC 2 (Jac-mean: 0.22 ± 0.11, p = 0.001; Dice: 0.08 ± 0.03, p = 0.006). Meanwhile, Jac-mean and Dice correlated with health-related quality of life, 6 min-walk distance, and the extent of pulmonary fibrosis. Jac-mean correlated with pulmonary vascular-related indexes on high-resolution CT. CONCLUSION: The decreased lung deformation in IPF patients correlated with the clinical severity of IPF patients. Elastic registration of inspiratory-to-expiratory 3D UTE MRI may be a new morphological and functional marker for non-radiation and noninvasive evaluation of IPF. CRITICAL RELEVANCE STATEMENT: This prospective study demonstrated that lung deformation decreased in idiopathic pulmonary fibrosis (IPF) patients and correlated with the severity of IPF. Elastic registration of inspiratory-to-expiratory three-dimensional ultrashort echo time (3D UTE) MRI may be a new morphological and functional marker for non-radiation and noninvasive evaluation of IPF. KEY POINTS: • Elastic registration of inspiratory-to-expiratory three-dimensional ultrashort echo time (3D UTE) MRI could evaluate lung deformation. • Lung deformation significantly decreased in idiopathic pulmonary fibrosis (IPF) patients, compared with the healthy controls. • Reduced lung deformation of IPF patients correlated with worsened pulmonary function and the composite physiological index (CPI).

14.
Quant Imaging Med Surg ; 13(3): 1488-1498, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36915349

RESUMEN

Background: To clarify whether dynamic quantification of variables derived from chest high-resolution computed tomography (HRCT) can assess the progression of idiopathic pulmonary fibrosis (IPF). Methods: Patients with IPF who underwent serial computed tomography (CT) imaging were retrospectively enrolled. Several structural abnormalities seen on HRCT in IPF were segmented and quantified. Patients were divided into 2 groups according to their pulmonary function test (PFT) results: those with disease stabilization and those with disease progression, and differences between the groups were analyzed. Results: There were no statistically significant differences between the 2 patient groups for the following parameters: baseline PFTs, total lesion extent, lesion extent at different sites in the lungs, and pulmonary vessel-related parameters (with P values ranging from 0.057 to 0.894). Median changes in total lung volume, total lesion volume, and total lesion ratio were significantly higher in patients with worsening disease compared with those with stable disease (P<0.001). There was a significant increase in total lesion volume of 214.73 mL [interquartile range (IQR), 68.26 to 501.46 mL] compared with 3.67 mL (IQR, -71.70 to 85.33 mL) in the disease progression group compared with the disease stability group (P=0.001). The decline in pulmonary vessel volume and number of pulmonary vessel branches was more pronounced in the group with functional worsening compared with the group with functional stability. Moreover, changes in lesion volume ratio were negatively correlated with changes in diffusing capacity of the lungs for carbon monoxide (DLco) during follow-up (R=-0.57, P<0.001), and changes in pulmonary vessel-related parameters demonstrated positive correlation with DLco (with R ranging from 0.27 to 0.53, P<0.001) and forced vital capacity (FVC) (with R ranging from 0.44 to 0.61, P<0.001). Conclusions: Changes in CT-related parameters during follow-up may have better predictive performance compared with baseline imaging parameters and PFTs for disease progression in IPF.

15.
Quant Imaging Med Surg ; 13(10): 6710-6723, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37869274

RESUMEN

Background: Computed tomography pulmonary angiography (CTPA) is a first-line noninvasive method to diagnose acute pulmonary thromboembolism (APE); however, whether chest noncontrast CT (NC-CT) could aid in the diagnosis of APE remains unknown. The aim of this study was to build and evaluate a holistic lung graph-based machine learning (HLG-ML) using NC-CT for the diagnosis of APE and to compare its performance with that of radiologists and the YEARS algorithm. Methods: This study enrolled 178 cases (77 males; age 63.9±16.7 years) who underwent NC-CT and CTPA in the same day from January 2019 to December 2020. Of these patients, 133 (75% of cases; 58 males; age 65.4±15.6 years) were placed into a training group and 45 (25% of cases; 19 males; age 59.6±19.2 years) into a testing group. The other 43 cases (18 males; age 62.8±20.0 years) were used to externally validate the model between January 2021 and March 2022. A HLG was developed with a pulmonary radiomics descriptor derived from NC-CT images. The approach extracted local radiomics features and encoded these local features into a radiomics descriptor as a characterization of global radiomics feature distribution. Subsequently, 8 ML models were trained and compared based on the radiomics descriptor. In the validation group, area under the curves (AUCs) of the HLG-ML model in the diagnosis of APE were compared with those of the 3 radiologists and the YEARS algorithm. Results: Among the 8 ML models, gradient boosting decision tree demonstrated the best classification performance (AUC =0.772) on the training set. In the testing set, the AUC of gradient boosting decision trees was 0.857 [95% confidence intervals (CIs): 0.699-0.951]. In the validation set, the performance of gradient boosting decision tree (AUC =0.810; 95% CI: 0.669-0.952; Youden index =0.621) outperformed 3 radiologists (AUC =0.508, 95% CI: 0.335-0.681, Youden index =0.016; AUC =0.504, 95% CI: 0.354-0.654, Youden index =0.008; AUC =0.527, 95% CI: 0.363-0.691, Youden index =0.050) and the YEARS algorithm (AUC =0.618; 95% CI: 0.469-0.767; Youden index =0.237). Conclusions: Compared to all 3 radiologists and the YEARS algorithm, the proposed HLG-based gradient boosting decision tree model achieved a superior performance in the diagnosis of APE on the NC-CT and may thus serve as a valuable tool for physicians in the diagnosis of APE.

16.
J Thorac Imaging ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37732685

RESUMEN

PURPOSE: To quantitatively analyze lung elasticity in idiopathic pulmonary fibrosis (IPF) using elastic registration based on 3-dimensional pulmonary magnetic resonance imaging (3D-PMRI) and to assess its' correlations with the severity of IPF patients. MATERIAL AND METHODS: Thirty male patients with IPF (mean age: 62±6 y) and 30 age-matched male healthy controls (mean age: 62±6 y) were prospectively enrolled. 3D-PMRI was acquired with a 3-dimensional ultrashort echo time sequence in end-inspiration and end-expiration. MR images were registered from end-inspiration to end-expiration with the elastic registration algorithm. Jacobian determinants were calculated from deformation fields on color maps. The log means of the Jacobian determinants (Jac-mean) and Dice similarity coefficient were used to describe lung elasticity between 2 groups. Then, the correlation of lung elasticity with dyspnea Medical Research Council (MRC) score, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis on chest computed tomography were analyzed. RESULTS: The Jac-mean of IPF patients (-0.19, [IQR: -0.22, -0.15]) decreased (absolute value), compared with healthy controls (-0.28, [IQR: -0.31, -0.24], P<0.001). The lung elasticity in IPF patients with dyspnea MRC≥3 (Jac-mean: -0.15; Dice: 0.06) was significantly lower than MRC 1 (Jac-mean: -0.22, P=0.001; Dice: 0.10, P=0.001) and MRC 2 (Jac-mean: -0.21, P=0.007; Dice: 0.09, P<0.001). In addition, the Jac-mean negatively correlated with forced vital capacity % (r=-0.487, P<0.001), forced expiratory volume 1% (r=-0.413, P=0.004), TLC% (r=-0.488, P<0.001), diffusing capacity of the lungs for carbon monoxide % predicted (r=-0.555, P<0.001), 6-minute walk distance (r=-0.441, P=0.030) and positively correlated with respiratory symptoms (r=0.430, P=0.042). Meanwhile, the Dice similarity coefficient positively correlated with forced vital capacity % (r=0.577, P=0.004), forced expiratory volume 1% (r=0.526, P=0.012), diffusing capacity of the lungs for carbon monoxide % predicted (r=0.435, P=0.048), 6-minute walk distance (r=0.473, P=0.016), final peripheral oxygen saturation (r=0.534, P=0.004), the extent of fibrosis on chest computed tomography (r=-0.421, P=0.021) and negatively correlated with activity (r=-0.431, P=0.048). CONCLUSION: Lung elasticity decreased in IPF patients and correlated with dyspnea, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis. The lung elasticity based on elastic registration of 3D-PMRI may be a new nonradiation imaging biomarker for quantitative evaluation of the severity of IPF.

17.
Quant Imaging Med Surg ; 13(10): 6876-6886, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37869330

RESUMEN

Background: Accurate interpretation of coronary computed tomography angiography (CCTA) is a labor-intensive and expertise-driven endeavor, as inexperienced readers may inadvertently overestimate stenosis severity. Recent artificial intelligence (AI) advances in medical imaging present compelling prospects for auxiliary diagnostic tools in CCTA. This study aimed to externally validate an AI-assisted analysis system capable of rapidly evaluating stenosis severity, exploring its potential integration into routine clinical workflows. Methods: This multicenter study consisted of an internal and external cohort of patients who underwent CCTA scans between April 2017 and February 2023. CCTA scans were evaluated using Coronary Artery Disease Reporting and Data System (CAD-RADS) scores to determine stenosis severity, while ground-truth stents were manually annotated by expert readers. The InferRead CT Heart (version 1.6; Infervision Medical Technology Co., Ltd., Beijing, China), which incorporates AI-assisted coronary artery stenosis quantification and automatic stent segmentation, was employed for CCTA scan analysis. AI-based stenosis assessment performance was determined using sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), while the AI-based stent segmentation overlap was assessed using the Dice similarity coefficient (DSC). Results: For ≥50% stenosis diagnoses, the AI system attained per-patient sensitivity, specificity, PPV, and NPV surpassing 90.0% for the internal dataset; for the external dataset, the per-patient values were 88.0% [95% confidence interval (CI): 81.0-94.4%], 94.5% (95% CI: 90.7-97.6%), 90.0% (95% CI: 83.3-95.6%), and 93.4% (95% CI: 89.2-96.8%), respectively. For ≥70% stenosis diagnoses, the per-patient values on the internal dataset were 94.2% (95% CI: 89.2-98.1%), 95.8% (95% CI: 94.1-97.4%), 80.8% (95% CI: 73.5-87.7%), and 98.9% (95% CI: 97.9-99.6%), respectively; for the external dataset, the per-patient values were 91.9% (95% CI: 82.6-100.0%), 97.3% (95% CI: 94.9-99.1%), 85.0% (95% CI: 72.5-94.6%), and 98.6% (95% CI: 96.8-100.0%), respectively. Regarding CAD-RADS categorization, the Cohen kappa was 0.75 and 0.81 for the internal per-patient and per-vessel basis, respectively, and 0.72 and 0.76 for the external per-patient and per-vessel basis, respectively. The DSC for stent segmentation was 0.96±0.06. Conclusions: The AI-assisted analysis system for CCTA interpretation exhibited exceptional proficiency in stenosis quantification and stent segmentation, indicating that AI holds considerable potential in advancing CCTA postprocessing techniques.

18.
Stroke Vasc Neurol ; 8(3): 238-248, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36418056

RESUMEN

Stroke imposes a substantial burden worldwide. With the rapid economic and lifestyle transition in China, trends of the prevalence of stroke across different geographic regions in China remain largely unknown. Capitalizing on the data in the National Health Services Surveys (NHSS), we assessed the prevalence and risk factors of stroke in China from 2003 to 2018. In this study, data from 2003, 2008, 2013, and 2018 NHSS were collected. Stroke cases were based on participants' self-report of a previous diagnosis by clinicians. We estimated the trends of stroke prevalence for the overall population and subgroups by age, sex, and socioeconomic factors, then compared across different geographic regions. We applied multivariable logistic regression to assess associations between stroke and risk factors. The number of participants aged 15 years or older were 154,077, 146,231, 230,067, and 212,318 in 2003, 2008, 2013, and 2018, respectively, among whom, 1435, 1996, 3781, and 6069 were stroke patients. The age and sex standardized prevalence per 100,000 individuals was 879 in 2003, 1100 in 2008, 1098 in 2013, and 1613 in 2018. Prevalence per 100,000 individuals in rural areas increased from 669 in 2003 to 1898 in 2018, while urban areas had a stable trend from 1261 in 2003 to 1365 in 2018. Across geographic regions, the central region consistently had the highest prevalence, but the western region has an alarmingly increasing trend from 623/100,000 in 2003 to 1898/100,000 in 2018 (P trend<0.001), surpassing the eastern region in 2013. Advanced age, male sex, rural area, central region, hypertension, diabetes, depression, low education and income level, retirement or unemployment, excessive physical activity, and unimproved sanitation facilities were significantly associated with stroke. In conclusion, the increasing prevalence of stroke in China was primarily driven by economically underdeveloped regions. It is important to develop targeted prevention programs in underdeveloped regions. Besides traditional risk factors, more attention should be paid to nontraditional risk factors to improve the prevention of stroke.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Humanos , Masculino , Estudios Transversales , Prevalencia , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Hipertensión/epidemiología
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 29(2): 341-6, 2012 Apr.
Artículo en Zh | MEDLINE | ID: mdl-22616187

RESUMEN

Aiming at the shortcomings of slow convergence and inaccuracy segmentation in non-homogeneous images, improvements were made on the traditional C-V model in two aspects. Firstly, using a novel model based on local gradient, the initial contour of the C-V model was quickly moved near the target border, greatly reducing the evolution time. Secondly, combining the characteristics of GVF model from two directions to the target border, an adaptive velocity reconciling item was added for velocity equation of the C-V model to make the model converge to the true border. The segmentation experiments for liver tumors in CT showed that the proposed method could be effective.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Modelos Teóricos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Humanos , Reconocimiento de Normas Patrones Automatizadas/métodos
20.
Int J Comput Assist Radiol Surg ; 17(4): 627-637, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35194737

RESUMEN

PURPOSE: The aim of this study was to explore the application of five-class deep residual network models based on plain CT images and clinical features for the precise staging of liver fibrosis. METHODS: This retrospective clinical study included 347 patients who underwent liver CT, with pathological staging of liver fibrosis as the gold standard. We established three ResNet models to stage liver fibrosis. The output diagnosis labels of models were 0, 1, 2, 3 and 4, which correspond to F0, F1, F2, F3, and F4 stages. Confusion matrices were used to evaluate the performances of models to precisely stage liver fibrosis. The performance for diagnosing cirrhosis (F4), advanced fibrosis (≥ F3) and significant fibrosis (≥ F2) of models was evaluated with receiver operating characteristic (ROC) analyses. RESULTS: The kappa coefficients of the five-class ResNet model (based on plain CT images), the five-class ResNet clinical model (based on clinical features), and the five-class mixed ResNet model (based on plain CT images and clinical features) for precise staging liver fibrosis were 0.566, 0.306, and 0.63, respectively. The recall rates and precision rates for F0, F1, F2, and F3 of three models were lower than 60%. The ROC AUC values of the five-class ResNet model, the five-class ResNet clinical model, and the five-class mixed ResNet model for diagnosing cirrhosis, advanced fibrosis, and significant fibrosis were 0.95, 0.88, and 0.82, 0.80, 0.72, and 0.70, 0.95, 0.90, and 0.83, respectively. CONCLUSIONS: The five-class ResNet models are of high value in the diagnosis of liver cirrhosis, advanced liver fibrosis, and significant liver fibrosis. However, for the precise staging of liver fibrosis, the models cannot accurately distinguish other liver fibrosis stages except F4. Plain CT images combined with clinical features have the potential to improve the performance of the ResNet models in diagnosing liver fibrosis.


Asunto(s)
Cirrosis Hepática , Tomografía Computarizada por Rayos X , Progresión de la Enfermedad , Humanos , Hígado/patología , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Curva ROC , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA