Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(9): 102284, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868561

RESUMEN

cGMP-dependent protein kinase (PKG) represents a compelling drug target for treatment of cardiovascular diseases. PKG1 is the major effector of beneficial cGMP signaling which is involved in smooth muscle relaxation and vascular tone, inhibition of platelet aggregation and signaling that leads to cardioprotection. In this study, a novel piperidine series of activators previously identified from an ultrahigh-throughput screen were validated to directly bind partially activated PKG1α and subsequently enhance its kinase activity in a concentration-dependent manner. Compounds from initial optimization efforts showed an ability to activate PKG1α independent of the endogenous activator, cGMP. We demonstrate these small molecule activators mimic the effect of cGMP on the kinetic parameters of PKG1α by positively modulating the KM of the peptide substrate and negatively modulating the apparent KM for ATP with increase in catalytic efficiency, kcat. In addition, these compounds also allosterically modulate the binding affinity of cGMP for PKG1α by increasing the affinity of cGMP for the high-affinity binding site (CNB-A) and decreasing the affinity of cGMP for the low-affinity binding site (CNB-B). We show the mode of action of these activators involves binding to an allosteric site within the regulatory domain, near the CNB-B binding site. To the best of our knowledge, these are the first reported non-cGMP mimetic small molecules shown to directly activate PKG1α. Insights into the mechanism of action of these compounds will enable future development of cardioprotective compounds that function through novel modes of action for the treatment of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , GMP Cíclico , Piperidinas , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/enzimología , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Humanos , Piperidinas/farmacología , Piperidinas/uso terapéutico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
2.
Bioorg Med Chem Lett ; 63: 128666, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35276360

RESUMEN

The development of RAF inhibitors targeting cancers with wild type RAF kinase and/or RAS mutation has been challenging due to the paradoxical activation of the RAS-RAF-MEK-ERK cascade following RAF inhibitor treatment. Herein is the discovery and optimization of a series of RAF inhibitors with a novel spiro structure. The most potent spiro molecule 9 showed excellent in vitro potency against b/c RAF enzymes and RAS mutant H358 cancer cells with minimal paradoxical RAF signaling activation. Compound 9 also exhibited good drug-like properties as demonstrated by in vitro cytochrome P450 (CYP), liver microsome stability (LMS) data and moderate oral pharmacokinetics (PK) profiles in rat and mouse.


Asunto(s)
Neoplasias , Compuestos de Espiro , Animales , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas , Ratones , Mutación , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas p21(ras)/genética , Ratas , Compuestos de Espiro/farmacología
3.
Crit Care ; 26(1): 46, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172856

RESUMEN

BACKGROUND: Previous cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes. METHODS: We conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment. RESULTS: Forty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups. CONCLUSIONS: In this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness. TRIAL REGISTRATION: ISRCTN, ISRCTN12233792 . Registered November 20th, 2017.


Asunto(s)
Enfermedad Crítica , Apoyo Nutricional , China , Enfermedad Crítica/terapia , Humanos , Unidades de Cuidados Intensivos , Factores de Tiempo
4.
Int J Clin Pract ; 2022: 6498794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685552

RESUMEN

Aim: To explore the potential relationship between NLR and micronutrient deficiency in patients with severe COVID-19 infection. Methods: Sixteen patients were categorized into the mild group (mild COVID-19) and severe group (severe COVID-19) based on the guideline of the management of COVID-19. The lactate dehydrogenase (LDH); superoxide dismutase (SOD), the inflammatory markers (neutrophil lymphocyte ratio (NLR)), erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), selenium (Se), iron (Fe), zinc (Zn), nickel (Ni), copper (Cu), chromium (Cr), cadmium (Cd), arsenic (As), and manganese (Mn) were measured in the blood. Results: Compared to the mild group, the NLR (P < 0.05) and the level of Se (P < 0.01), Fe (P < 0.05), and Zn (P < 0.05) were significantly decreased in the severe group. The level of Se, Fe, and Zn was significantly correlated to NLR levels. Furthermore, close positive correlation was found between NLR and severity of COVID-19. Conclusion: The micronutrient deficiency in the blood is associated with NLR in the severity of COVID-19 patients.


Asunto(s)
COVID-19 , Neutrófilos , Humanos , Linfocitos , Micronutrientes , Zinc
5.
Ann Hum Genet ; 85(6): 221-234, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34185889

RESUMEN

In the early 2000s, emerging SARS-CoV-2, which is highly pathogenic, posed a great threat to public health. During COVID-19, epigenetic regulation is deemed to be an important part of the pathophysiology and illness severity. Using the Illumina Infinium Methylation EPIC BeadChip (850 K), we investigated genome-wide differences in DNA methylation between healthy subjects and COVID-19 patients with different disease severities. We conducted a combined analysis and selected 35 "marker" genes that could indicate a SARS-CoV-2 infection, including 12 (ATHL1, CHN2, CHST15, CPLX2, CRHR2, DCAKD, GNAI2, HECW1, HYAL1, MIR510, PDE11A, and SMG6) situated in the promoter region. The functions and pathways of differentially methylated genes were enriched in biological processes, signal transduction, and the immune system. In the "Severe versus Mild" group, differentially methylated genes, after eliminating duplicates, were used for PPI analyses. The four hub genes (GNG7, GNAS, PRKCZ, and PRKAG2) that had the highest degree of nodes were identified and among them, GNG7 and GNAS genes expressions were also downregulated in the severe group in sequencing results. Above all, the results suggest that GNG7 and GNAS may play a non-ignorable role in the progression of COVID-19. In conclusion, the identified key genes and related pathways in the current study can be used to study the molecular mechanisms of COVID-19 and may provide possibilities for specific treatments.


Asunto(s)
COVID-19/genética , COVID-19/patología , Metilación de ADN/genética , Epigénesis Genética/genética , Índice de Severidad de la Enfermedad , Adulto , Cromograninas/genética , Islas de CpG/genética , Epigenoma/genética , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Marcadores Genéticos/genética , Humanos , Inflamación/patología , Masculino , Persona de Mediana Edad , SARS-CoV-2
6.
Nature ; 526(7575): 672-7, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26416753

RESUMEN

Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.


Asunto(s)
Pirimidinas/química , Pirimidinas/farmacología , ARN Bacteriano/química , ARN Bacteriano/efectos de los fármacos , Riboswitch/efectos de los fármacos , Animales , Aptámeros de Nucleótidos/química , Bacterias/citología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Secuencia de Bases , Cristalografía por Rayos X , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Femenino , Mononucleótido de Flavina/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Transferasas Intramoleculares/genética , Ligandos , Ratones , Ratones Endogámicos DBA , Modelos Moleculares , Datos de Secuencia Molecular , Pirimidinas/aislamiento & purificación , Pirimidinas/uso terapéutico , ARN Bacteriano/genética , Reproducibilidad de los Resultados , Riboflavina/biosíntesis , Riboswitch/genética , Especificidad por Sustrato
7.
Int J Clin Pract ; 75(8): e14031, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33474792

RESUMEN

OBJECTIVE: The ongoing pandemic of COVID-19 caused by the novel coronavirus Syndrome-Coronavirus-2 (SARS-CoV-2) is an emerging, rapidly evolving situation. Excluded typical manifestation of pneumonia and acute respiratory symptoms, COVID-19 patients also have abnormal D-dimer concentration in the serum, but the results are controversial. METHOD: A meta-analysis first aims to explored the connection between D-dimer concentration and COVID-19 patients. RESULTS: Our results found a significant relationship between D-dimer and COVID-19, with a pooled OR of 1.90 (95% CI: 1.32-2.48; P < .001). The pooled data were calculated with the REM as a high heterogeneity within the studies. The sensitivity analysis results showed that the WMD ranged from 1.69 (95% CI: 1.15 to 2.23) to 2.06 (95% CI: 1.51 to 2.62) and there was no publication bias. CONCLUSIONS: Our meta-analysis showed that the severity of patients with COVID-19 significance related to D-dimer concentrations. Meanwhile, the severe COVID-19 patients tend to have a higher concentration of D-dimer when compared with non-severe patients. REVIEW CRITERIA: We used MASH word and searched the online database and followed the inclusion and exclusion standard. The detailed information can be found in the text. MESSAGE FOR THE CLINIC: Our meta-analysis showed that the severity of patients with COVID-19 significance related to D-dimer concentrations. This may be helpful for the clinic COVID-19 patients.


Asunto(s)
COVID-19 , Productos de Degradación de Fibrina-Fibrinógeno , Humanos , Pandemias , SARS-CoV-2
8.
Biochem Biophys Res Commun ; 521(2): 408-413, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31668922

RESUMEN

Increasing evidence indicates some G protein-coupled receptors function as a heterodimer, which provide a novel target for therapeutics investigation. However, study on the receptor-receptor interaction interface, a potent target on interfering dimer formation, are still limited. Here, using bioluminescence resonance energy transfer (BRET) combined with co-immunoprecipitation (Co-IP), we found a new constitutive GPCR heterodimer, apelin receptor (APJ)-orexin receptor type 1 (OX1R). Both APJ and OX1R co-internalized when constantly subjected to cognate agonist (apelin-13 or orexin-A) specific to either protomer. Combined with BRET and immunostaining, the in vitro synthesized transmembrane peptides (TMs) interfering experiments suggests that TM4 and 5 of APJ act as the interaction interface of the APJ-OX1R heterodimer, and co-internalization could be disrupted by these peptides as well. Our study not only provide new evidence on GPCR heterodimerization, but address a novel heterodimerization interface, which can be severed as a potential pharmacological target.


Asunto(s)
Receptores de Apelina/química , Receptores de Orexina/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores de Apelina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Inmunoprecipitación , Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína
9.
J Transl Med ; 18(1): 462, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287854

RESUMEN

BACKGROUND: Sepsis is a significant cause of mortality in-hospital, especially in ICU patients. Early prediction of sepsis is essential, as prompt and appropriate treatment can improve survival outcomes. Machine learning methods are flexible prediction algorithms with potential advantages over conventional regression and scoring system. The aims of this study were to develop a machine learning approach using XGboost to predict the 30-days mortality for MIMIC-III Patients with sepsis-3 and to determine whether such model performs better than traditional prediction models. METHODS: Using the MIMIC-III v1.4, we identified patients with sepsis-3. The data was split into two groups based on death or survival within 30 days and variables, selected based on clinical significance and availability by stepwise analysis, were displayed and compared between groups. Three predictive models including conventional logistic regression model, SAPS-II score prediction model and XGBoost algorithm model were constructed by R software. Then, the performances of the three models were tested and compared by AUCs of the receiver operating characteristic curves and decision curve analysis. At last, nomogram and clinical impact curve were used to validate the model. RESULTS: A total of 4559 sepsis-3 patients are included in the study, in which, 889 patients were death and 3670 survival within 30 days, respectively. According to the results of AUCs (0.819 [95% CI 0.800-0.838], 0.797 [95% CI 0.781-0.813] and 0.857 [95% CI 0.839-0.876]) and decision curve analysis for the three models, the XGboost model performs best. The risk nomogram and clinical impact curve verify that the XGboost model possesses significant predictive value. CONCLUSIONS: Using machine learning technique by XGboost, more significant prediction model can be built. This XGboost model may prove clinically useful and assist clinicians in tailoring precise management and therapy for the patients with sepsis-3.


Asunto(s)
Aprendizaje Automático , Sepsis , Mortalidad Hospitalaria , Humanos , Modelos Logísticos , Curva ROC , Sepsis/diagnóstico
10.
J Formos Med Assoc ; 119(5): 950-956, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31822372

RESUMEN

BACKGROUND/PURPOSE: This study aimed to determine the potential effects of angiopoietin-2 (Ang-2), von Willebrand factor (vWF), and extravascular lung water index (EVLWI) on the risk of mortality in sepsis patients with concomitant acute respiratory distress syndrome (ARDS). METHODS: This retrospective study recruited 41 sepsis patients with concomitant ARDS from January 2015 to June 2018. Data of Ang-2 and vWF levels, EVLWI, and sequential organ failure assessment scores were collected at 0, 24, and 48 h after admission to the hospital. RESULTS: The length of intensive care unit stay (P = 0.041) and Acute Physiology and Chronic Health Evaluation-2 (APACHE II) score (P = 0.003) were associated with the risk of mortality. Furthermore, increased Ang-2 levels and EVLWI at 24 h and 48 h were associated with an increased risk of mortality. Moreover, the APACHE II score at hospital admission significantly predicted the risk of mortality (area under the curve [AUC], 0.834; 95% confidence interval [CI], 0.665-0.983). Finally, the models containing a combination of Ang-2 level and EVLWI at 24 h (AUC, 0.908; 95% CI, 0.774-0.996) and Ang-2 level and EVLWI at 48 h (AUC, 0.981; 95% CI, 0.817-1.000) had high diagnostic values for predicting risk of mortality. CONCLUSION: The study findings indicate that Ang-2 levels and EVLWI at 24 h and 48 h after admission are significantly associated with the risk of mortality.


Asunto(s)
Angiopoyetina 2 , Agua Pulmonar Extravascular , Síndrome de Dificultad Respiratoria , Sepsis , Factor de von Willebrand , Humanos , Pronóstico , Curva ROC , Estudios Retrospectivos , Factores de Riesgo , Sepsis/mortalidad
11.
BMC Microbiol ; 19(1): 150, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31272373

RESUMEN

BACKGROUND: The prevalence of antibiotic resistance is increasing, and multidrug-resistant Pseudomonas aeruginosa has been identified as a serious threat to human health. The production of ß-lactamase is a key mechanism contributing to imipenem resistance in P. aeruginosa. Relebactam is a novel ß-lactamase inhibitor, active against class A and C ß-lactamases, that has been shown to restore imipenem susceptibility. In a series of studies, we assessed the interaction of relebactam with key mechanisms involved in carbapenem resistance in P. aeruginosa and to what extent relebactam might overcome imipenem non-susceptibility. RESULTS: Relebactam demonstrated no intrinsic antibacterial activity against P. aeruginosa, had no inoculum effect, and was not subject to efflux. Enzymology studies showed relebactam is a potent (overall inhibition constant: 27 nM), practically irreversible inhibitor of P. aeruginosa AmpC. Among P. aeruginosa clinical isolates from the SMART global surveillance program (2009, n = 993; 2011, n = 1702; 2015, n = 5953; 2016, n = 6165), imipenem susceptibility rates were 68.4% in 2009, 67.4% in 2011, 70.4% in 2015, and 67.3% in 2016. With the addition of 4 µg/mL relebactam, imipenem susceptibility rates increased to 87.6, 86.0, 91.7, and 89.8%, respectively. When all imipenem-non-susceptible isolates were pooled, the addition of 4 µg/mL relebactam reduced the mode imipenem minimum inhibitory concentration (MIC) 8-fold (from 16 µg/mL to 2 µg/mL) among all imipenem-non-susceptible isolates. Of 3747 imipenem-non-susceptible isolates that underwent molecular profiling, 1200 (32%) remained non-susceptible to the combination imipenem/relebactam (IMI/REL); 42% of these encoded class B metallo-ß-lactamases, 11% encoded a class A GES enzyme, and no class D enzymes were detected. No relationship was observed between alleles of the chromosomally-encoded P. aeruginosa AmpC and IMI/REL MIC. CONCLUSIONS: IMI/REL exhibited potential in the treatment of carbapenem-resistant P. aeruginosa infections, with the exception of isolates encoding class B, some GES alleles, and class D carbapenemases.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Imipenem/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/efectos de los fármacos , Combinación de Medicamentos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Humanos , Cinética , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , beta-Lactamasas/efectos de los fármacos
12.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1153-1164, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28288880

RESUMEN

The orexin (OX1R) and cholecystokinin A (CCK1R) receptors play opposing roles in the migration of the human colon cancer cell line HT-29, and may be involved in the pathogenesis and pathophysiology of cancer cell invasion and metastasis. OX1R and CCK1R belong to family A of the G-protein-coupled receptors (GPCRs), but the detailed mechanisms underlying their functions in solid tumor development remain unclear. In this study, we investigated whether these two receptors heterodimerize, and the results revealed novel signal transduction mechanisms. Bioluminescence and Förster resonance energy transfer, as well as proximity ligation assays, demonstrated that OX1R and CCK1R heterodimerize in HEK293 and HT-29 cells, and that peptides corresponding to transmembrane domain 5 of OX1R impaired heterodimer formation. Stimulation of OX1R and CCK1R heterodimers with both orexin-A and CCK decreased the activation of Gαq, Gαi2, Gα12, and Gα13 and the migration of HT-29 cells in comparison with stimulation with orexin-A or CCK alone, but did not alter GPCR interactions with ß-arrestins. These results suggest that OX1R and CCK1R heterodimerization plays an anti-migratory role in human colon cancer cells.


Asunto(s)
Movimiento Celular , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Receptores de Orexina/metabolismo , Multimerización de Proteína , Receptor de Colecistoquinina A/metabolismo , Transducción de Señal , Células HEK293 , Células HT29 , Humanos , Receptores de Orexina/genética , Unión Proteica , Dominios Proteicos , Receptor de Colecistoquinina A/genética , beta-Arrestinas/metabolismo
14.
RNA Biol ; 13(10): 946-954, 2016 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-27485612

RESUMEN

Bacterial riboswitches are non-coding RNA structural elements that direct gene expression in numerous metabolic pathways. The key regulatory roles of riboswitches, and the urgent need for new classes of antibiotics to treat multi-drug resistant bacteria, has led to efforts to develop small-molecules that mimic natural riboswitch ligands to inhibit metabolic pathways and bacterial growth. Recently, we reported the results of a phenotypic screen targeting the riboflavin biosynthesis pathway in the Gram-negative bacteria Escherichia coli that led to the identification of ribocil, a small molecule inhibitor of the flavin mononucleotide (FMN) riboswitch controlling expression of this biosynthetic pathway. Although ribocil is structurally distinct from FMN, ribocil functions as a potent and highly selective synthetic mimic of the natural ligand to repress riboswitch-mediated ribB gene expression and inhibit bacterial growth both in vitro and in vivo. Herein, we expand our analysis of ribocil; including mode of binding in the FMN binding pocket of the riboswitch, mechanisms of resistance and structure-activity relationship guided efforts to generate more potent analogs.

15.
Biochim Biophys Acta ; 1843(3): 652-63, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24368186

RESUMEN

Orexin-A and Orexin-B play important roles in many physiological processes in which Orexins orchestrate diverse downstream effects via two G-protein coupled receptors: Orexin1R and Orexin2R. Two alternative C-terminus splice variants of the mouse Orexin receptors mOX2alphaR and mOX2betaR have recently been identified. This study explored the possibility of heterodimerization between mOX2alphaR and mOX2betaR, and investigated novel signal transduction characteristics after stimulation. The dimerization of mOX2alphaR and mOX2betaR was confirmed by BRET and co-immunoprecipitation assays. Meanwhile, in HEK293 cells, co-expression of mOX2alphaR and mOX2betaR resulted in a strengthened increase in activation of ERK1/2, with maximal activation at 5 min and 100 nM. Furthermore, heterodimerization also elicits stronger intracellular Ca2+ elevation after Orexin(s) stimulation, followed by a slower decline in intracellular Ca2+ to a steady endpoint Protein Kinase C Inhibitor significantly inhibited these downstream effects. In addition, the cAMP response element reporter activities were significantly reduced, whereas the serum response element luciferase and the T-lymphocyte activation of nuclear factor-responsive element reporter activity were significantly up-regulated after Orexin(s) stimulation. Besides, Orexin-A/-B induced a significantly higher rate of HEK293 cell proliferation in cells co-expressing mOX2alphaR/mOX2betaR compared to the control group. Taken together, we provide conclusive evidence that mOX2alphaR can form a functional heterodimer with mOX2betaR and this leads to increased PKC and decreased protein kinase A activity by ERK signal pathway leading to a significant increase in cell proliferation. The nature of this signaling pathway has significant implications for the role of Orexin in the regulation of physiological processes including the homeostasis of feeding.


Asunto(s)
Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Proliferación Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Variación Genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Neuropéptidos/metabolismo , Orexinas , Multimerización de Proteína , Transducción de Señal
16.
Bioorg Med Chem Lett ; 25(7): 1592-6, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25728416

RESUMEN

The development of renin inhibitors with favorable oral pharmacokinetic profiles has been a longstanding challenge for the pharmaceutical industry. As part of our work to identify inhibitors of BACE1, we have previously developed iminopyrimidinones as a novel pharmacophore for aspartyl protease inhibition. In this letter we describe how we modified substitution around this pharmacophore to develop a potent, selective and orally active renin inhibitor.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Iminas/farmacología , Pirimidinonas/farmacología , Renina/antagonistas & inhibidores , Administración Oral , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Iminas/síntesis química , Iminas/química , Modelos Moleculares , Estructura Molecular , Pirimidinonas/síntesis química , Pirimidinonas/química , Renina/metabolismo , Relación Estructura-Actividad
17.
Bioorg Med Chem Lett ; 24(1): 199-203, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24332088

RESUMEN

A new class of quinoline-based kinase inhibitors has been discovered that both disrupt cyclin dependent 2 (CDK2) interaction with its cyclin A subunit and act as ATP competitive inhibitors. The key strategy for discovering this class of protein-protein disrupter compounds was to screen the monomer CDK2 in an affinity-selection/mass spectrometry-based technique and to perform secondary assays that identified compounds that bound only to the inactive CDK2 monomer and not the active CDK2/cyclin A heterodimer. Through a series of chemical modifications the affinity (Kd) of the original hit improved from 1 to 0.005µM.


Asunto(s)
Ciclina A/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Cristalografía por Rayos X , Ciclina A/química , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Quinolinas/química , Relación Estructura-Actividad
18.
J Med Chem ; 67(5): 3400-3418, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38387069

RESUMEN

The use of ß-lactam (BL) and ß-lactamase inhibitor combination to overcome BL antibiotic resistance has been validated through clinically approved drug products. However, unmet medical needs still exist for the treatment of infections caused by Gram-negative (GN) bacteria expressing metallo-ß-lactamases. Previously, we reported our effort to discover pan inhibitors of three main families in this class: IMP, VIM, and NDM. Herein, we describe our work to improve the GN coverage spectrum in combination with imipenem and relebactam. This was achieved through structure- and property-based optimization to tackle the GN cell penetration and efflux challenges. A significant discovery was made that inhibition of both VIM alleles, VIM-1 and VIM-2, is essential for broad GN coverage, especially against VIM-producing P. aeruginosa. In addition, pharmacokinetics and nonclinical safety profiles were investigated for select compounds. Key findings from this drug discovery campaign laid the foundation for further lead optimization toward identification of preclinical candidates.


Asunto(s)
Antibacterianos , Inhibidores de beta-Lactamasas , Humanos , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , Inhibidores de beta-Lactamasas/química , Antibacterianos/química , Imipenem/farmacología , beta-Lactamasas , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
19.
Eur J Pharmacol ; 960: 176150, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38059447

RESUMEN

The study of orphan G protein-coupled receptors (GPCRs) holds much promise for increasing our understanding of neuropsychiatric diseases and for the development of new therapeutic strategies for these diseases. GPR139 is an orphan GPCR expressed in the central nervous system, especially in areas of the brain that control movement, motivation, and reward, and those that regulate neuropsychiatric behaviour. This review provides information about the discovery, tissue expression, signal transduction pathways, and physiological functions of GPR139, as well as how GPR139 interacts with other GPCRs, which form heteromeric complexes that affect their pharmacology and function. We also discuss the utility and therapeutic potential of ligands that target GPR139, including the pharmacological properties of reported agonists and antagonists. Finally, we highlight the pathologic role of GPR139 in neuropsychiatric behaviour and its potential as a therapeutic target in neuropsychiatric disorders.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo
20.
Exp Biol Med (Maywood) ; 248(2): 146-156, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573455

RESUMEN

Autophagy plays works by degrading misfolded proteins and dysfunctional organelles and maintains intracellular homeostasis. Apelin-13 has been investigated as an agent that might protect the blood-brain barrier (BBB) from cerebral ischemia/reperfusion (I/R) injury. In this study, we examined whether apelin-13 protects cerebral microvascular endothelial cells, important components of the BBB, from I/R injury by regulating autophagy. To mimic I/R injury, the mouse cerebral microvascular endothelia l cell line bEnd 3 undergoes the process of oxygen and glucose deprivation and re feeding in the process of culture. Cell viability was detected using a commercial kit, and cell migration was monitored by in vitro scratch assay. The tight junction (TJ) proteins ZO-1 and occludin; the autophagy markers LC3 II, beclin 1, and p62; and components of the AKT-mTOR signaling pathway were detected by Western blotting and immunofluorescence. To confirm the role of autophagy in OGD/R and the protective effect of apelin-13, we treated the cells with 3-methyladenine (3-MA), a pharmacological inhibitor of autophagy. Our results demonstrated that OGD/R increased autophagic activity but decreased viability, abundance of TJs, and migration. Viability and TJ abundance were further reduced when the OGD/R group was treated with 3-MA. These results indicated that bEnd.3 upregulates autophagy to ameliorate the effects of OGD/R injury on viability and TJs, but that the autophagy induced by OGD/R alone is not sufficient to protect against the effect on cell migration. Treatment of OGD/R samples with apelin-13 markedly increased viability, TJ abundance, and migration, as well as autophagic activity, whereas 3-MA inhibited this increase, suggesting that apelin-13 exerted its protective effects by upregulating autophagy.


Asunto(s)
Oxígeno , Daño por Reperfusión , Ratones , Animales , Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Endoteliales/metabolismo , Glucosa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Reperfusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA