Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacoepidemiol Drug Saf ; 33(2): e5756, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38357810

RESUMEN

BACKGROUND: Distinguishing warfarin-related bleeding risk at the bedside remains challenging. Studies indicate that warfarin therapy should be suspended when international normalized ratio (INR) ≥ 4.5, or it may sharply increase the risk of bleeding. We aim to develop and validate a model to predict the high bleeding risk in valve replacement patients during hospitalization. METHOD: Cardiac valve replacement patients from January 2016 to December 2021 across Nanjing First Hospital were collected. Five different machine-learning (ML) models were used to establish the prediction model. High bleeding risk was an INR ≥4.5. The area under the receiver operating characteristic curve (AUC) was used for evaluating the prediction performance of different models. The SHapley Additive exPlanations (SHAP) was used for interpreting the model. We also compared ML with ATRIA score and ORBIT score. RESULTS: A total of 2376 patients were finally enrolled in this model, 131 (5.5%) of whom experienced the high bleeding risk after anticoagulation therapy of warfarin during hospitalization. The extreme gradient boosting (XGBoost) exhibited the best overall prediction performance (AUC: 0.882, confidence interval [CI] 0.817-0.946, Brier score, 0.158) compared to other prediction models. It also shows superior performance compared with ATRIA score and ORBIT score. The top 5 most influential features in XGBoost model were platelet, thyroid stimulation hormone, body surface area, serum creatinine and white blood cell. CONCLUSION: A model for predicting high bleeding risk in valve replacement patients who treated with warfarin during hospitalization was successfully developed by using machine learning, which may well assist clinicians to identify patients at high risk of bleeding and allow timely adjust therapeutic strategies in evaluating individual patient.


Asunto(s)
Anticoagulantes , Warfarina , Humanos , Hemorragia/inducido químicamente , Hemorragia/epidemiología , Válvulas Cardíacas/cirugía , Aprendizaje Automático
2.
Angew Chem Int Ed Engl ; 63(4): e202313446, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38038595

RESUMEN

Encoded nanostructures afford an ideal platform carrying multi-channel signal components for multiplexed assay and information security. However, with the demand on exclusivity and reproducibility of coding signals, precise control on the structure and composition of nanomaterials featuring fully distinguishable signals remains challenging. By using the multiplexing capability of mass spectrometry (MS) and spatial addressability of DNA origami nanostructures, we herein propose a quality control methodology for constructing mass-encoded nanodevices (namely MNTs-TDOFs) in the scaffold of compartmented tetrahedral DNA origami frames (TDOFs), in which the arrangement and stoichiometry of four types of mass nanotags (MNTs) can be finely regulated and customized to generate characteristic MS patterns. The programmability of combinatorial MNTs and orthogonality of individual compartments allows further evolution of MNTs-TDOFs to static tagging agents and dynamic nanoprobes for labeling and sensing of multiple targets. More importantly, structure control at single TDOF level ensures the constancy of prescribed MS outputs, by which a high-capacity coding system was established for secure information encryption and decryption. In addition to the multiplexed outputs in parallel, the nanodevices could also map logic circuits with interconnected complexity and logic events of c-Met recognition and dimerization on cell surface for signaling regulation by MS interrogation.


Asunto(s)
ADN , Nanoestructuras , Reproducibilidad de los Resultados , ADN/química , Nanoestructuras/química , Lógica , Nanotecnología/métodos
3.
Environ Sci Technol ; 57(9): 3917-3929, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36820857

RESUMEN

Acetotrophic methanogens' dysfunction in anaerobic digestion under ammonia pressure has been widely concerned. Lipids, the main cytomembrane structural biomolecules, normally play indispensable roles in guaranteeing cell functionality. However, no studies explored the effects of high ammonia on acetotrophic methanogens' lipids. Here, a high-throughput lipidomic interrogation deciphered lipid reprogramming in representative acetoclastic methanogen (Methanosarcina barkeri) upon high ammonia exposure. The results showed that high ammonia conspicuously reduced polyunsaturated lipids and longer-chain lipids, while accumulating lipids with shorter chains and/or more saturation. Also, the correlation network analysis visualized some sphingolipids as the most active participant in lipid-lipid communications, implying that the ammonia-induced enrichment in these sphingolipids triggered other lipid changes. In addition, we discovered the decreased integrity, elevated permeability, depolarization, and diminished fluidity of lipid-supported membranes under ammonia restraint, verifying the noxious ramifications of lipid abnormalities. Additional analysis revealed that high ammonia destabilized the structure of extracellular polymeric substances (EPSs) capable of protecting lipids, e.g., declining α-helix/(ß-sheet + random coil) and 3-turn helix ratios. Furthermore, the abiotic impairment of critical EPS bonds, including C-OH, C═O-NH-, and S-S, and the biotic downregulation of functional proteins involved in transcription, translation, and EPS building blocks' supply were unraveled under ammonia stress and implied as the crucial mechanisms for EPS reshaping.


Asunto(s)
Amoníaco , Methanosarcina barkeri , Humanos , Methanosarcina barkeri/metabolismo , Amoníaco/metabolismo , Lípidos , Methanosarcina/metabolismo
4.
Environ Sci Technol ; 57(46): 18306-18316, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37043541

RESUMEN

Antibiotics often coexist with other pollutants (e.g., nitrate) in an aquatic environment, and their simultaneous biological removal has attracted widespread interest. We have found that sulfamethoxazole (SMX) and nitrate can be efficiently removed by the coculture of a model denitrifier (Paracoccus denitrificans, Pd) and Shewanella oneidensis MR-1 (So), and SMX degradation is affected by NADH production and electron transfer. In this paper, the mechanism of a coculture promoting NADH production and electron transfer was investigated by proteomic analysis and intermediate experiments. The results showed that glutamine and lactate produced by Pd were captured by So to synthesize thiamine and heme, and the released thiamine was taken up by Pd as a cofactor of pyruvate and ketoglutarate dehydrogenase, which were related to NADH generation. Additionally, Pd acquired heme, which facilitated electron transfer as heme, was the important composition of complex III and cytochrome c and the iron source of iron sulfur clusters, the key component of complex I in the electron transfer chain. Further investigation revealed that lactate and glutamine generated by Pd prompted So chemotactic moving toward Pd, which helped the two bacteria effectively obtain their required substances. Obviously, metabolite cross-feeding promoted NADH production and electron transfer, resulting in efficient SMX biodegradation by Pd and So in the presence of nitrate. Its feasibility was finally verified by the coculture of an activated sludge denitrifier and So.


Asunto(s)
Nitratos , Shewanella , Nitratos/metabolismo , Sulfametoxazol/metabolismo , NAD/metabolismo , Electrones , Glutamina/metabolismo , Proteómica , Hierro , Ácido Pirúvico/metabolismo , Lactatos/metabolismo , Hemo/metabolismo , Tiamina/metabolismo , Shewanella/metabolismo
5.
BMC Nephrol ; 24(1): 379, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115082

RESUMEN

BACKGROUND: Advanced glycation end products (AGEs) deposited in the lens are correlated with those in the kidneys, indicating a possible value in evaluating diabetic kidney disease (DKD). This study explored the value of noninvasively measuring lens AGEs to diagnose and evaluate the severity of diabetic nephropathy in patients with type 2 diabetes mellitus (T2DM). METHODOLOGY: A total of 134 T2DM patients admitted to the Fifth People's Hospital of Shanghai from March 2020 to May 2021 were selected randomly. Patients were divided into low-, medium-and high-risk groups according to the risk assessment criteria for DKD progression and into DKD and non-DKD (non-DKD) groups according to the Guidelines for the Prevention and Treatment of Diabetic Nephropathy in China. The concentrations of noninvasive AGEs in the lens in all the groups were retrospectively analyzed. RESULTS: The concentration of noninvasive lens AGEs in the high-risk patients, according to the 2012 guidelines of the Global Organization for Improving the Prognosis of Kidney Diseases, was significantly higher than that in the remaining groups. Regression analysis suggested the value of lens AGEs in diagnosing DKD and evaluating DKD severity. Cox regression analysis indicated that the noninvasive lens AGE concentration was positive correlated with the course of disease. CONCLUSION: The receiver operating characteristic (ROC) curve suggested that using noninvasive lens AGE measurements has clinical value in the diagnosis of DKD (area under the curve 62.4%,95% confidence interval (CI) 52.4%-73.9%, p = 0.014) and in assessing the severity of DKD (area under the curve 83.2%, 95% CI 74.1%-92.3%, P < 0.001). Noninvasive lens AGE testing helps screen T2DM patients for DKD and evaluate the severity of DKD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/diagnóstico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Estudios Retrospectivos , China/epidemiología , Productos Finales de Glicación Avanzada
6.
J Environ Manage ; 348: 119335, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37857212

RESUMEN

Addressing the widespread concern of chromium (Cr) pollution, this study investigated its impacts on bacterial communities across eight soil types, alongside the potential Cr transformation-related genes. Utilizing real-time PCR, 16S rRNA gene sequencing and gene prediction, we revealed shifts in bacterial community structure and function at three Cr exposure levels. Our results showed that the bacterial abundance in all eight soil types was influenced by Cr to varying extents, with yellow‒brown soil being the most sensitive. The bacterial community composition of different soil types exhibited diverse responses to Cr, with only the relative abundance of Proteobacteria decreasing with increasing Cr concentration across all soil types. Beta diversity analysis revealed that while Cr concentration impacted the assembly process of bacterial communities to a certain extent, the influence on the compositional structure of bacterial communities was primarily driven by soil type rather than Cr concentration. The study also identified biomarkers for each soil type under three Cr levels, offering a basis for monitoring changes in Cr pollution. By predicting crucial functional genes related to Cr transformation, it was observed that the relative abundance of chrA (chromate transporter) in yellow‒brown soil significantly exceeded that in all other soil types, suggesting its potential for Cr adaptation. The study also revealed correlations among soil physicochemical properties, Cr concentration, and these functional genes, providing a foundation for future research aimed at more precise functional analysis and the development of effective soil remediation strategies.


Asunto(s)
Cromo , Contaminantes del Suelo , Cromo/análisis , Suelo/química , ARN Ribosómico 16S/genética , Bacterias/genética , Proteobacteria/genética , Microbiología del Suelo , Contaminantes del Suelo/análisis
7.
Anal Chem ; 94(16): 6329-6337, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35412806

RESUMEN

Simultaneously monitoring and quantifying intracellular multiple microRNAs (miRNAs) is highly essential to clinical diagnosis and pathological research. However, revealing the intracellular distribution of multiple miRNAs while determining their content in a multiplex and quantitative format remains challenging. Considering the respective technical merit of fluorescence imaging and mass spectrometry (MS) in in situ detection and multiplex assaying, we herein propose fluorophore/mass dual-encoded nanoprobes (FMNPs) that can execute target-triggered hairpin self-assembly to enable in situ amplified imaging and follow-up MS quantification of intracellular multiple miRNAs. The FMNPs responsive to the target miRNA were constructed by codecorating gold nanoparticles (AuNPs) with locked hairpin DNA probes (LH1) and corresponding mass tags (MTs) for fluorescent and mass spectrometric dual-modal readout. Cellular miRNAs can separately trigger recycled hairpin self-assembly, leading to the continuous liberation of fluorophore-labeled bolt DNA (bDNA) for fluorescence imaging in cells. Moreover, the postreaction FMNPs afford an extra chance to validate the fluorescence output of miRNA-21 and miRNA-141 by accurate MS quantification relying on the ion signal of the barcoded MTs. Fluorescence imaging and MS quantification of miRNA-21 and miRNA-141 have also been successfully accomplished in different cell lines, highlighting its potential in cell subtyping. This "sense-and-validate" strategy creates a new modality for assaying multiple intracellular miRNAs and holds great promise in unveiling multicomponent-involved events in cellular processes and determining multiple biomarkers in accurate clinical diagnosis.


Asunto(s)
Nanopartículas del Metal , MicroARNs , Colorantes Fluorescentes/química , Oro/química , Ionóforos , Espectrometría de Masas , Nanopartículas del Metal/química , MicroARNs/análisis , Imagen Óptica
8.
Anal Chem ; 94(21): 7609-7618, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35575691

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is widely applied in mapping macrobiomolecules in tissues, but it is still limited in profiling low-molecular-weight (MW) compounds (typically metabolites) due to ion interference and suppression by organic matrices. Here, we present a versatile "top-down" strategy for rational engineering of carbon material-based matrices, by which heteroatom-doped graphene quantum dots (HGQDs) were manufactured for LDI MS detection and imaging of small biomolecules. The HGQDs derived from parent materials inherited the π-conjugated networks and doping sites for promoting energy transfer and negative ion generation, while their extremely small size guaranteed the matrix uniformity and signal reproducibility in LDI MSI. Compared to other HGQDs, nitrogen-doped graphene quantum dots (NGQDs) exhibited superior capability of assisting LDI of various small molecules, including amino acids, fatty acids, saccharides, small peptides, nucleobases, anticancer drugs, and bisphenol pollutants. Density functional theory simulations also corroborated that the LDI efficiency was markedly raised by the proton-capturing pyridinic nitrogen species and compromised by the electron-deficient boron dopants. NGQDs-assisted LDI MS further enabled label-free investigation on enzyme kinetics using an ordinary short peptide as the substrate. Moreover, due to the high salt tolerance and signal reproducibility, the proposed negative-ion NGQDs-assisted LDI MSI was able to reveal the abundance and distribution of low-MW species in rat brain tissue and achieved the imaging of low-MW lipids in coronally sectioned rat brains subjected to traumatic brain injury. Our work offers a new route for customizing nanomaterial matrices toward LDI MSI of small biomolecules in biomedical and pathological research.


Asunto(s)
Grafito , Puntos Cuánticos , Animales , Rayos Láser , Nitrógeno , Péptidos/análisis , Ratas , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
9.
Environ Sci Technol ; 56(12): 8702-8711, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35549463

RESUMEN

During proteinaceous waste valorization to produce volatile fatty acids (VFAs), protein needs to be hydrolyzed to amino acids (AAs), but the effects of the configuration of AAs on their biotransformation and VFA production have not been investigated. In this study, more residual d-AAs than their corresponding l-AAs were observed after VFAs were produced from kitchen waste in a pilot-scale bioreactor. For all AAs investigated, the VFA production from d-AAs was lower than that from corresponding l-AAs. The metagenomics and metaproteomics analyses revealed that the l-AA fermentation system exhibited greater bacterial chemotaxis and quorum sensing (QS) than d-AAs, which benefited the establishment of functional microorganisms (such as Clostridium, Sedimentibacter, and Peptoclostridium) and expression of functional proteins (e.g., substrate transportation cofactors, l-AA dehydrogenase, and acidogenic proteins). In addition, d-AAs need to be racemized to l-AAs before being metabolized, and the difference of VFA production between d-AAs and l-AAs decreased with the increase of racemization activity. The findings of the AA configuration affecting bacterial chemotaxis and QS, which altered microorganism communities and functional protein expression, provided a new insight into the reasons for higher l-AA metabolism than d-AAs and more d-AAs left during VFA production from proteinaceous wastes.


Asunto(s)
Aminoácidos , Percepción de Quorum , Aminoácidos/metabolismo , Anaerobiosis , Bacterias/metabolismo , Reactores Biológicos , Quimiotaxis , Ácidos Grasos Volátiles , Fermentación , Concentración de Iones de Hidrógeno , Proteínas/metabolismo
10.
Cereb Cortex ; 31(2): 1060-1076, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32995836

RESUMEN

Feedback-related negativity (FRN) is believed to encode reward prediction error (RPE), a term describing whether the outcome is better or worse than expected. However, some studies suggest that it may reflect unsigned prediction error (UPE) instead. Some disagreement remains as to whether FRN is sensitive to the interaction of outcome valence and prediction error (PE) or merely responsive to the absolute size of PE. Moreover, few studies have compared FRN in appetitive and aversive domains to clarify the valence effect or examine PE's quantitative modulation. To investigate the impact of valence and parametrical PE on FRN, we varied the prediction and feedback magnitudes within a probabilistic learning task in valence (gain and loss domains, Experiment 1) and non-valence contexts (pure digits, Experiment 2). Experiment 3 was identical to Experiment 1 except that some blocks emphasized outcome valence, while others highlighted predictive accuracy. Experiments 1 and 2 revealed a UPE encoder; Experiment 3 found an RPE encoder when valence was emphasized and a UPE encoder when predictive accuracy was highlighted. In this investigation, we demonstrate that FRN is sensitive to outcome valence and expectancy violation, exhibiting a preferential response depending on the dimension that is emphasized.


Asunto(s)
Encéfalo/fisiología , Aprendizaje Discriminativo/fisiología , Potenciales Evocados/fisiología , Retroalimentación Fisiológica/fisiología , Motivación/fisiología , Aprendizaje por Probabilidad , Adolescente , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Análisis de Componente Principal/métodos , Distribución Aleatoria , Adulto Joven
11.
Environ Res ; 204(Pt A): 111941, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34474034

RESUMEN

Chromium (Cr) pollution has attracted much attention due to its biological toxicity. However, little is known regarding Cr toxicity to soil microorganisms. The present study assesses the toxicity of Cr(VI) on two microbial processes, potential nitrification rate (PNR) and substrate-induced respiration (SIR), in a wide range of agricultural soils and detected the abundance of soil bacteria, fungi, ammonia-oxidizing bacteria and archaea. The toxicity thresholds of 10% and 50% effective concentrations (EC10 and EC50) for PNR varied by 32.18- and 38.66-fold among different soils, while for SIR they varied by 391.21- and 16.31-fold, respectively. Regression model analysis indicated that for PNR, CEC as a single factor explained 27% of the variation in EC10, with soil clay being the key factor explaining 47.3% of the variation in EC50. For SIR, organic matter and pH were found to be the most vital predictors for EC10 and EC50, explaining 34% and 61.1% of variation, respectively. In addition, extended aging time was found to significantly attenuate the toxicity of Cr on PNR. SIR was mainly driven by total bacteria rather than fungi, while PNR was driven by both AOA and AOB. These results were helpful in deriving soil Cr toxicity threshold based on microbial processes, and provided a theoretical foundation for ecological risk assessments and establishing a soil environmental quality criteria for Cr.


Asunto(s)
Microbiología del Suelo , Suelo , Amoníaco , Cromo/toxicidad , Oxidación-Reducción , Filogenia
12.
Environ Dev Sustain ; 24(10): 11471-11513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34776765

RESUMEN

Waste sorting is an effective means of enhancing resource or energy recovery from municipal solid waste (MSW). Waste sorting management system is not limited to source separation, but also involves at least three stages, i.e., collection and transportation (C&T), pretreatment, and resource utilization. This review focuses on the whole process of MSW management strategy based on the waste sorting perspective. Firstly, as the sources of MSW play an essential role in the means of subsequent valorization, the factors affecting the generation of MSW and its prediction methods are introduced. Secondly, a detailed comparison of approaches to source separation across countries is presented. Constructing a top-down management system and incentivizing or constraining residents' sorting behavior from the bottom up is believed to be a practical approach to promote source separation. Then, the current state of C&T techniques and its network optimization are reviewed, facilitated by artificial intelligence (AI) and the Internet of Things technologies. Furthermore, the advances in pretreatment strategies for enhanced sorting and resource recovery are introduced briefly. Finally, appropriate methods to valorize different MSW are proposed. It is worth noting that new technologies, such as AI, show high application potential in waste management. The sharing of (intermediate) products or energy of varying processing units will inject vitality into the waste management network and achieve sustainable development.

13.
J Physiol ; 596(1): 31-46, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29052230

RESUMEN

KEY POINTS: Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle. Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament. Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto-myosin ATPase cycle. Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto-myosin ATPase. Thick filament regulation is a promising target for novel therapeutics in heart disease. ABSTRACT: Contraction of heart muscle is triggered by a transient rise in intracellular free calcium concentration linked to a change in the structure of the actin-containing thin filaments that allows the head or motor domains of myosin from the thick filaments to bind to them and induce filament sliding. It is becoming increasingly clear that cardiac contractility is also regulated through structural changes in the thick filaments, although the molecular mechanisms underlying thick filament regulation are still relatively poorly understood. Here we investigated those mechanisms using small molecules - omecamtiv mecarbil (OM) and blebbistatin (BS) - that bind specifically to myosin and respectively activate or inhibit contractility in demembranated cardiac muscle cells. We measured isometric force and ATP utilization at different calcium and small-molecule concentrations in parallel with in situ structural changes determined using fluorescent probes on the myosin regulatory light chain in the thick filaments and on troponin C in the thin filaments. The results show that BS inhibits contractility and actin-myosin ATPase by stabilizing the OFF state of the thick filament in which myosin head domains are more parallel to the filament axis. In contrast, OM stabilizes the ON state of the thick filament, but inhibits contractility at high intracellular calcium concentration by disrupting the actin-myosin ATPase pathway. The effects of BS and OM on the calcium sensitivity of isometric force and filament structural changes suggest that the co-operativity of calcium activation in physiological conditions is due to positive coupling between the regulatory states of the thin and thick filaments.


Asunto(s)
Miosinas Cardíacas/fisiología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Contracción Miocárdica , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Urea/análogos & derivados , Citoesqueleto de Actina/metabolismo , Animales , Calcio/metabolismo , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal , Urea/farmacología
14.
Arch Sex Behav ; 47(7): 1949-1957, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29134421

RESUMEN

Men who have sex with men (MSM) carry the burden of HIV infection in China. Outside of China, a history of childhood sexual abuse (CSA) has been associated with HIV-related risks (behavioral, sexual, and mental health outcomes) among MSM. We therefore evaluated the relationship between CSA and these HIV-related risks among MSM in China. Cross-sectional data were collected via a survey from gay websites and social networking applications from MSM in 30 provinces in mainland China during a 3-month period in 2014 and 2015. Overall, 999 screened MSM who responded to questions on CSA were included. Multinomial logistic regression models-adjusted for sociodemographic confounders-showed that men who reported experiencing regular CSA and contact CSA, respectively, were more likely to use substances (adjusted odds ratio [AOR], 1.91; 95% confidence interval [CI] 1.39-2.62 and AOR, 1.70; 95% CI 1.25-2.31), had a history of sexually transmitted infections (AOR, 1.81; 95% CI 1.29-2.55 and AOR, 1.65; 95% CI 1.18-2.96), had more male sexual partners (AOR, 1.06; 95% CI 1.04-1.09 and AOR, 1.05; 95% CI 1.03-1.08), engaged in more condomless sex with men (AOR, 1.89; 95% CI 1.39-2.56 and AOR, 1.72; 95% CI 1.29-2.30), and experienced more psychological distress (AOR, 1.05; 95% CI 1.02-1.08 and AOR, 1.05; 95% CI 1.03-1.08). Both frequent and contact forms of CSA were positively associated with HIV-related risks among MSM, suggesting that general CSA prevention strategies and interventions are needed to support this population.


Asunto(s)
Abuso Sexual Infantil/psicología , Conductas de Riesgo para la Salud , Conducta Sexual/estadística & datos numéricos , Minorías Sexuales y de Género/psicología , Enfermedades de Transmisión Sexual/epidemiología , Adolescente , Adulto , Niño , Preescolar , China , Estudios Transversales , VIH , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Homosexualidad Masculina/psicología , Humanos , Modelos Logísticos , Masculino , Oportunidad Relativa , Parejas Sexuales
15.
Zhongguo Zhong Yao Za Zhi ; 40(4): 634-8, 2015 Feb.
Artículo en Zh | MEDLINE | ID: mdl-26137682

RESUMEN

Flavonol synthase (FLS) is one of the key enzymes in flavonoids metabolic pathways. In this study, middle sequence was obtained from Carthamus tinctorius transcriptome sequencing results. Full-length cDNAs of FLS was cloned from petals of C. tinctorius to FLS by using RT-PCR and RACE technology. Its full-length cDNA was 1,201 bp, with an open reading frame of 1,101 bp and 336 encoded amino acids. The phylogenetic analysis showed that, FLS gene encoded amino acids in C. tinctorius were highly homologous with amino acids in congeneric Compositae species, especially Rudbeckia laciniata. The pBASTA-FLS plant expression vector was successfully built by the molecular biology method, which lays a foundation for further studying biology functions of the gene and biosynthesis mechanism of flavonoids.


Asunto(s)
Carthamus tinctorius/enzimología , Clonación Molecular , Oxidorreductasas/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Carthamus tinctorius/clasificación , Carthamus tinctorius/genética , ADN Complementario/genética , ADN Complementario/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Oxidorreductasas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
16.
Environ Technol ; 45(11): 2156-2170, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36601901

RESUMEN

Nitrite-oxidizing bacteria (NOB) are crucial to nitrification and nitrogen elimination in wastewater treatment. Mass reports exist on the links between NOB and other microorganisms, for instance, ammonia-oxidizing bacteria (AOB). However, a few studies exist on the enrichment characterisation of NOB under high dissolved oxygen (DO) conditions. In this study, NOB was designed to be enriched individually under high DO conditions in a continuous aeration sequencing batch reactor (SBR), and the kinetic characterisation of NOB was evaluated. The analysis revealed that the average NO2--N removal rate was steady above 98%, with DO and NO2--N being 3-5 mg L-1 and 50-450 mg L-1, respectively. The NO2--N removal efficiency of the system was significantly enhanced and better than in other studies. The high-throughput sequencing suggested that Parcubacteria_ genera_incertae_sedis was the first dominant genus (21.99%), which often appeared in the NOB biological community with Nitrospira. However, the dominant genus NOB was Nitrospira rather than Nitrobacter (8.49%). This result suggested that Nitrospira was capable of higher NO2--N removal. But lower relative abundance indicated that excessive NO2--N had an adverse effect on the enrichment and activity of Nitrospira. In addition, the nitrite half-saturation constant (KNO2) and the oxygen half-saturation constant (KO) were 1.71 ± 0.19 mg L-1 and 0.95 ± 0.10 mg L-1, respectively. These results showed that the enriched Nitrospira bacteria had different characteristics at the strain level, which can be used as a theoretical basis for wastewater treatment plant design and optimisation.


Asunto(s)
Nitritos , Dióxido de Nitrógeno , Oxidación-Reducción , Bacterias , Nitrificación , Reactores Biológicos/microbiología , Amoníaco
17.
J Hazard Mater ; 469: 133675, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508109

RESUMEN

When Cr(VI) and nitrate coexist, the efficiency of both bio-denitrification and Cr(VI) bio-reduction is poor because chromate hinders bacterial normal functions (i.e., electron production, transportation and consumption). Moreover, under anaerobic condition, the method about efficient nitrate and Cr(VI) removal remained unclear. In this paper, the addition of Shewanella oneidensis MR-1 to promote the electron production, transportation and consumption of denitrifier and cause an increase in the removal of nitrate and Cr(VI). The efficiency of nitrate and Cr(VI) removal accomplished by P. denitrificans as a used model denitrifier increased respectively from 51.3% to 96.1% and 34.3% to 99.8% after S. oneidensis MR-1 addition. The mechanism investigations revealed that P. denitrificans provided S. oneidensis MR-1 with lactate, which was utilized to secreted riboflavin and phenazine by S. oneidensis MR-1. The riboflavin served as coenzymes of cellular reductants (i.e., thioredoxin and glutathione) in P. denitrificans, which created favorable intracellular microenvironment conditions for electron generation. Meanwhile, phenazine promoted biofilm formation, which increased the adsorption of Cr(VI) on the cell surface and accelerated the Cr(VI) reduction by membrane bound chromate reductases thereby reducing damage to other enzymes respectively. Overall, this strategy reduced the negative effect of chromate, thus improved the generation, transportation, and consumption of electrons. SYNOPSIS: The presence of S. oneidensis MR-1 facilitated nitrate and Cr(VI) removal by P. denitrificans through decreasing the negative effect of chromate due to the metabolites' secretion.


Asunto(s)
Nitratos , Shewanella , Nitratos/metabolismo , Cromatos/metabolismo , Oxidación-Reducción , Electrones , Cromo/metabolismo , Shewanella/metabolismo , Fenazinas , Riboflavina/metabolismo
18.
Nutr Diabetes ; 14(1): 42, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858392

RESUMEN

BACKGROUND: Vitamin D was shown to directly exert a protective effect on diabetic kidney disease (DKD) in our previous study. However, whether it has an effect on perirenal adipose tissue (PRAT) or the intestinal flora and its metabolites (trimethylamine N-oxide, TMAO) is unclear. METHODS: DKD mice were received different concentrations of 1,25-(OH)2D3 for 2 weeks. Serum TNF-α levels and TMAO levels were detected. 16S rRNA sequencing was used to analyze gut microbiota. qPCR was used to detect the expression of TLR4, NF-Κb, PGC1α, and UCP-1 in kidney and adipose tissue. Histological changes in kidney and perirenal adipose tissue were observed using HE, PAS, Masson and oil red staining. Immunofluorescence and immunohistochemistry were used to detect the expression of VDR, PGC1α, podocin, and UCP-1 in kidney and adipose tissue. Electron microscopy was used to observe the pathological changes in the kidney. VDR knockout mice were constructed to observe the changes in the gut and adipose tissue, and immunofluorescence and immunohistochemistry were used to detect the expression of UCP-1 and collagen IV in the kidney. RESULTS: 1,25-(OH)2D3 could improve the dysbiosis of the intestinal flora of mice with DKD, increase the abundance of beneficial bacteria, decrease the abundance of harmful bacteria, reduce the pathological changes in the kidney, reduce fat infiltration, and downregulate the expression of TLR4 and NF-κB in kidneys. The serum TMAO concentration in mice with DKD was significantly higher than that of the control group, and was significantly positively correlated with the urine ACR. In addition, vitamin D stimulated the expression of the surface markers PGC1α, UCP-1 and VDR in the PRAT in DKD mice, and TMAO downregulated the expression of PRAT and renal VDR. CONCLUSIONS: The protective effect of 1,25-(OH)2D3 in DKD mice may affect the intestinal flora and its related metabolite TMAO on perirenal fat and kidneys.


Asunto(s)
Nefropatías Diabéticas , Microbioma Gastrointestinal , Riñón , Metilaminas , Ratones Noqueados , Receptores de Calcitriol , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Riñón/metabolismo , Metilaminas/metabolismo , Metilaminas/sangre , Masculino , Receptores de Calcitriol/metabolismo , Nefropatías Diabéticas/metabolismo , Tejido Adiposo/metabolismo , Ratones Endogámicos C57BL , Vitamina D/farmacología , Calcitriol/farmacología
19.
Neuroscience ; 517: 1-17, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764599

RESUMEN

This study aimed to explore the neural mechanisms underlying food decision making in unsuccessful restrained eaters (US-REs) and successful restrained eaters (S-REs). During a functional magnetic resonance imaging scan, participants were required to choose between pairs of high- and low-calorie foods under the following conditions: the congruent condition (choose between high- and low-calorie foods with the same level of tastiness) and incongruent condition (choose between high-calorie foods tastier than the corresponding low-calorie foods). Subsequently, the participants' diets were monitored for one week. The behavioral results showed that US-REs (n = 28) chose more high-calorie foods than S-REs (n = 26); in contrast, S-REs spent more time in choosing for the incongruent than the congruent condition. The fMRI results found that US-REs exhibited more activity in reward regions (caudate and thalamus) than S-REs in the congruent condition. In the incongruent condition, S-REs showed stronger functional connectivity between the conflict-monitoring region (anterior cingulate cortex) and inhibitory-control regions (inferior frontal gyrus [IFG] and medial frontal gyrus) than US-REs. In both the conditions, increased activation of the insula, putamen, middle frontal gyrus, and IFG could predict increased food intake among US-REs in the following week. Furthermore, in both the conditions, increased IFG activation could predict decreased food cravings among S-REs during the following week. Our results suggest that US-REs have a strong reward response to food. Compared to US-REs, S-REs are more guided more by the goal of weight control, and exhibit strong functional connections between the conflict-monitoring and inhibitory-control regions. Therefore, eating enjoyment and weight-control goals influence restrained eating in daily life.


Asunto(s)
Conducta Alimentaria , Alimentos , Humanos , Conducta Alimentaria/fisiología , Motivación , Ansia , Dieta , Imagen por Resonancia Magnética , Ingestión de Alimentos
20.
Chemosphere ; 342: 140191, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716556

RESUMEN

Bio-alcohols have been proven promising alternatives to fossil fuels. Machine learning (ML), as an analytical tool for uncovering intrinsic correlations and mining data connotations, is also becoming widely used in the field of bio-alcohols. This article reviews the mechanisms, methods, and applications of ML in the bio-alcohols field. In terms of mechanisms, we describe the workflow of ML applications, emphasizing the importance of a well-defined research problem and complete feature engineering for a robust model. Prediction and optimization are the main application scenarios. In terms of methods, we illustrate the characteristics of different ML models and analyze their applicability in the bio-alcohol field. The role of ML in the production of bio-methanol by pyrolysis and gasification, as well as in the three stages of fermentation for bioethanol production are highlighted. In terms of utilization, ML is used to optimize engine performance and reduce emissions. This review provides guidance on how to use novel ML methods in the bio-alcohol field, showing the potential of ML to streamline work in the whole biofuel field.


Asunto(s)
Etanol , Metanol , Fermentación , Combustibles Fósiles , Aprendizaje Automático , Biocombustibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA