Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant J ; 118(2): 506-518, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38169508

RESUMEN

Thermosensitive genic female sterility (TGFS) is a promising property to be utilized for hybrid breeding. Here, we identified a rice TGFS line, tfs2, through an ethyl methyl sulfone (EMS) mutagenesis strategy. This line showed sterility under high temperature and became fertile under low temperature. Few seeds were produced when the tfs2 stigma was pollinated, indicating that tfs2 is female sterile. Gene cloning and genetic complementation showed that a point mutation from leucine to phenylalanine in HEI10 (HEI10tfs2), a crossover formation protein, caused the TGFS trait of tfs2. Under high temperature, abnormal univalents were formed, and the chromosomes were unequally segregated during meiosis, similar to the reported meiotic defects in oshei10. Under low temperature, the number of univalents was largely reduced, and the chromosomes segregated equally, suggesting that crossover formation was restored in tfs2. Yeast two-hybrid assays showed that HEI10 interacted with two putative protein degradation-related proteins, RPT4 and SRFP1. Through transient expression in tobacco leaves, HEI10 were found to spontaneously aggregate into dot-like foci in the nucleus under high temperature, but HEI10tfs2 failed to aggregate. In contrast, low temperature promoted HEI10tfs2 aggregation. This result suggests that protein aggregation at the crossover position contributes to the fertility restoration of tfs2 under low temperature. In addition, RPT4 and SRFP1 also aggregated into dot-like foci, and these aggregations depend on the presence of HEI10. These findings reveal a novel mechanism of fertility restoration and facilitate further understanding of HEI10 in meiotic crossover formation.


Asunto(s)
Infertilidad , Oryza , Intercambio Genético , Mutación Puntual , Oryza/genética , Fitomejoramiento
2.
Plant Biotechnol J ; 22(7): 2020-2032, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38421616

RESUMEN

P/TGMS (Photo/thermo-sensitive genic male sterile) lines are crucial resources for two-line hybrid rice breeding. Previous studies revealed that slow development is a general mechanism for sterility-fertility conversion of P/TGMS in Arabidopsis. However, the difference in P/TGMS genes between rice and Arabidopsis suggests the presence of a distinct P/TGMS mechanism in rice. In this study, we isolated a novel P/TGMS line, ostms19, which shows sterility under high-temperature conditions and fertility under low-temperature conditions. OsTMS19 encodes a novel pentatricopeptide repeat (PPR) protein essential for pollen formation, in which a point mutation GTA(Val) to GCA(Ala) leads to ostms19 P/TGMS phenotype. It is highly expressed in the tapetum and localized to mitochondria. Under high temperature or long-day photoperiod conditions, excessive ROS accumulation in ostms19 anthers during pollen mitosis disrupts gene expression and intine formation, causing male sterility. Conversely, under low temperature or short-day photoperiod conditions, ROS can be effectively scavenged in anthers, resulting in fertility restoration. This indicates that ROS homeostasis is critical for fertility conversion. This relationship between ROS homeostasis and fertility conversion has also been observed in other tested rice P/TGMS lines. Therefore, we propose that ROS homeostasis is a general mechanism for the sterility-fertility conversion of rice P/TGMS lines.


Asunto(s)
Fertilidad , Homeostasis , Oryza , Infertilidad Vegetal , Proteínas de Plantas , Polen , Especies Reactivas de Oxígeno , Oryza/genética , Oryza/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fertilidad/genética , Polen/genética , Polen/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Infertilidad Vegetal/genética , Regulación de la Expresión Génica de las Plantas , Temperatura , Luz , Fotoperiodo
3.
Plant Biotechnol J ; 21(8): 1659-1670, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37205779

RESUMEN

In rice breeding, thermosensitive genic male sterility (TGMS) lines based on the tms5 locus have been extensively employed. Here, we reported a novel rice TGMS line ostms15 (Oryza sativa ssp. japonica ZH11) which show male sterility under high temperature and fertility under low temperature. Field evaluation from 2018 to 2021 revealed that its sterility under high temperature is more stable than that of tms5 (ZH11), even with occasional low temperature periods, indicating its considerable value for rice breeding. OsTMS15 encodes an LRR-RLK protein MULTIPLE SPOROCYTE1 (MSP1) which was reported to interact with its ligand to initiate tapetum development for pollen formation. In ostms15, a point mutation from GTA (Val) to GAA (Glu) in its TIR motif of the LRR region led to the TGMS phenotype. Cellular observation and gene expression analysis showed that the tapetum is still present in ostms15, while its function was substantially impaired under high temperature. However, its tapetum function was restored under low temperature. The interaction between mOsTMS15 and its ligand was reduced while this interaction was partially restored under low temperature. Slow development was reported to be a general mechanism of P/TGMS fertility restoration. We propose that the recovered protein interaction together with slow development under low temperature compensates for the defective tapetum initiation, which further restores ostms15 fertility. We used base editing to create a number of TGMS lines with different base substitutions based on the OsTMS15 locus. This work may also facilitate the mechanistic investigation and breeding of other crops.


Asunto(s)
Infertilidad Masculina , Oryza , Masculino , Humanos , Temperatura , Ligandos , Fitomejoramiento , Fertilidad , Oryza/genética , Infertilidad Vegetal/genética
4.
J Cell Mol Med ; 26(12): 3557-3567, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35607269

RESUMEN

Atrial fibrillation (AF) is a rapid supraventricular arrhythmia. However, the pathogenesis of atrial fibrillation remains controversial. We obtained transcriptome expression profiles GSE41177, GSE115574 and GSE79768 from GEO database. WGCNA was performed, DEGs were screened, PPI network was constructed using STRING database. CTD database was used to identify the reference score of hub genes associated with cardiovascular diseases. Prediction of miRNAs of hub genes was performed by TargetScan. DIANA-miRPath v3.0 was applied to make functional annotation of miRNA. The animal model of atrial fibrillation was constructed, RT-PCR was used to verify the expression of hub genes. Immunofluorescence assay for THBS2 and VCAN was made to identify molecular. Design of BP neural network was made to explore the prediction relationship of CXCR4 and TYROBP on AF. The merged datasets contained 104 up-regulated and 34 down-regulated genes. GO and KEGG enrichment analysis results of DEGs showed they were mainly enriched in 'regulation of release of sequestered calcium ion into cytosol', 'actin cytoskeleton organization' and 'focal adhesion'. The hub genes were CXCR4, SNAI2, S100A4, IGFBP3, CSNK2A1, CHGB, VCAN, APOE, C1QC and TYROBP, which were up-regulated expression in the AF compared with control tissues. There was strong correlation among the CXCR4, TYROBP and AF based on the BP neural network. Through training, best training performance is 9.6474e-05 at epoch 14, and the relativity was 0.99998. CXCR4 and TYROBP might be involved in the development of atrial fibrillation by affecting inflammation-related signalling pathways and may serve as targets for early diagnosis and preventive treatment.


Asunto(s)
Fibrilación Atrial , MicroARNs , Proteínas Adaptadoras Transductoras de Señales/genética , Fibrilación Atrial/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Humanos , Inflamación/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transcriptoma
5.
Plant Biotechnol J ; 20(10): 2023-2035, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35781755

RESUMEN

Thermosensitive genic male sterility (TGMS) lines serve as the major genetic resource for two-line hybrid breeding in rice. However, their unstable sterility under occasional low temperatures in summer highly limits their application. In this study, we identified a novel rice TGMS line, ostms18, of cultivar ZH11 (Oryza sativa ssp. japonica). ostms18 sterility is more stable in summer than the TGMS line carrying the widely used locus tms5 in the ZH11 genetic background, suggesting its potential application for rice breeding. The ostms18 TGMS trait is caused by the point mutation from Gly to Ser in a glucose-methanol-choline (GMC) oxidoreductase; knockout of the oxidoreductase was previously reported to cause complete male sterility. Cellular analysis revealed the pollen wall of ostms18 to be defective, leading to aborted pollen under high temperature. Further analysis showed that the tapetal transcription factor OsMS188 directly regulates OsTMS18 for pollen wall formation. Under low temperature, the flawed pollen wall in ostms18 is sufficient to protect its microspore, allowing for development of functional pollen and restoring fertility. We identified the orthologous gene in Arabidopsis. Although mutants for the gene were fertile under normal conditions (24°C), fertility was significantly reduced under high temperature (28°C), exhibiting a TGMS trait. A cellular mechanism integrated with genetic mutations and different plant species for fertility restoration of TGMS lines is proposed.


Asunto(s)
Arabidopsis , Oryza , Oxidorreductasas , Infertilidad Vegetal , Polen , Arabidopsis/genética , Arabidopsis/fisiología , Colina/metabolismo , Glucosa/metabolismo , Metanol/metabolismo , Mutación , Oryza/genética , Oryza/fisiología , Oxidorreductasas/genética , Infertilidad Vegetal/genética , Polen/genética , Polen/crecimiento & desarrollo , Temperatura , Factores de Transcripción/genética
6.
J Sep Sci ; 43(12): 2436-2446, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32227667

RESUMEN

Four types of middle-pressure chromatogram isolated gels are evaluated for adsorption or desorption characteristics of ginsenosides from Panax ginseng. Among them, SP207SS and SP2MGS were selected for dynamic investigations based on their static adsorption or desorption capacity of total ginsenoside. Their adsorption kinetics was better explained by pseudosecond-order model and isotherms were preferably fitted to Langmuir model. Dynamic breakthrough experiments indicated an optimum sample loading speed of 4 bed volume/h for either SP207SS or SP2MGS. Desorption speed was determined to be 2 bed volume/h according to desorption amount of total ginsenoside in their effluents. Eight ginsenosides were identified and quantified by high performance liquid chromatography-triple quadropole-mass spectrometry in total ginsenoside extract and different fractions during stepwise dynamic elution. For SP207SS, 27.62% of loaded ginsenosides was detected in 40% ethanol fraction, while 59.12% of them were found in 60% ethanol fraction. As on SP2MGS, the number went to 53.71 and 44.43%, respectively. Recovery rate of ginsenosides were calculated to 78.65% for SP207SS and 89.53% for SP2MGS, respectively. Intriguingly, content of Rg1 and Re in 40% ethanol fraction from SP207SS became 20.1 and 18.6 times higher than that in total ginsenoside extract by one-step elution, which could be leveraged for the facile enrichment of these two ginsenosides from natural sources.


Asunto(s)
Ginsenósidos/análisis , Panax/química , Adsorción , Cromatografía Líquida de Alta Presión , Geles/química , Geles/aislamiento & purificación , Presión
7.
Planta ; 250(2): 535-548, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31111205

RESUMEN

MAIN CONCLUSION: ACOS5, OsACOS12 and PpACOS6 are all capable of fatty acyl-CoA synthetase activity but exhibit different substrate preferences. The transcriptional regulation of ACOS for sporopollenin synthesis appears to have been conserved in Physcomitrella, rice and Arabidopsis during evolution. Sporopollenin is the major constituent of spore and pollen exines. In Arabidopsis, acyl-CoA synthetase 5 (ACOS5) is an essential enzyme for sporopollenin synthesis, and its orthologues are PpACOS6 from the moss Physcomitrella and OsACOS12 from monocot rice. However, knowledge regarding the evolutionary conservation and divergence of the ACOS gene in sporopollenin synthesis remains limited. In this study, we analysed the function and regulation of PpACOS6 and OsACOS12. A complementation test showed that OsACOS12 driven by the ACOS5 promoter could partially restore the male fertility of the acos5 mutant in Arabidopsis, while PpACOS6 did not rescue the acos5 phenotype. ACOS5, PpACOS6 and OsACOS12 all complemented the acyl-CoA synthetase-deficient yeast strain (YB525) phenotype, although they exhibited different substrate preferences. To understand the conservation of sporopollenin synthesis regulation, we constructed two constructs with ACOS5 driven by the OsACOS12 or PpACOS6 promoter. Both constructs could restore the fertility of acos5 plants. The MYB transcription factor MS188 from Arabidopsis directly regulates ACOS5. We found that MS188 could also bind the promoters of OsACOS12 and PpACOS6 and activate the genes driven by the promoters, suggesting that the transcriptional regulation of these genes was similar to that of ACOS5. These results show that the ACOS gene promoter region from Physcomitrella, rice and Arabidopsis has been functionally conserved during evolution, while the chain lengths of fatty acid-derived monomers of sporopollenin vary in different plant species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Bryopsida/enzimología , Coenzima A Ligasas/metabolismo , Oryza/enzimología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Biopolímeros/biosíntesis , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/ultraestructura , Carotenoides/biosíntesis , Coenzima A Ligasas/genética , Genes Reporteros , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/ultraestructura , Filogenia , Infertilidad Vegetal , Proteínas de Plantas/genética , Polen/enzimología , Polen/genética , Polen/crecimiento & desarrollo , Polen/ultraestructura , Alineación de Secuencia , Especificidad por Sustrato , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Biochem Biophys Res Commun ; 485(2): 335-341, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28219642

RESUMEN

Cisplatin is a main compound for human hepatocellular carcinoma (HCC) chemotherapies, but it has certain cytotoxicity during applications. To release that, combining with other drugs are being as a regular plan in clinic. In our present study, we are focusing on one of active monomers extracted from Anemone Raddeana Regel, Raddeanin A (RA), which is on behalf of the same character like cisplatin in the tumor remedies. In order to investigate whether combination usage of RA and cisplatin can be priority to the later drug's effect development and its toxicity reduction in HCC, both of two drugs were treated 24 h or 48 h in QGY-7703 cells for estimating their abilities in tumor cell proliferation inhibition. Results show RA makes synergistic functions with cisplatin after measuring and analyzing their combination index (CI) values. Meanwhile it can strengthen cisplatin's effect through arresting the tumor cells in G0/G1 cycle and further promoting their apoptosis. Interestingly, the molecule signals correlated to tumor cell apoptosis containing both of p53 and bax are simultaneously activated, but bcl-2 and survivin are all depressed in mRNA level. Meanwhile, combining usage with RA can even raise the intracellular productions of reactive oxygen species (ROS). All these consequences reflect RA plays an important role in enhancing the therapeutic effect of cisplatin in HCC. This finding may guide for the drug usage of cisplatin in clinic practice.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Cisplatino/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Saponinas/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Especies Reactivas de Oxígeno/metabolismo
9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(4): 903-5, 2014 Apr.
Artículo en Zh | MEDLINE | ID: mdl-25007596

RESUMEN

Au was used as anode in some kind of organic electroluminescent devices. Sometimes transparent Au electrodes are required, which means that the thickness of Au electrode should be as thin as possible. Therefore, two metals together forming an electrode become a choice. In the present paper, translucent Au/Al layer was inserted to anode side, and OLED device with the structure of ITO/Al (16 nm)/Au (10 nm)/TPD (30 nm)/AlQ (30 nm)/LiF (0.5 nm)/Al was prepared. There is a spectral narrowing phenomenon on the device ITO/TPD (30 nm)/AlQ (30 nm)/LiF (0. 5 nm)/Al, and through analysis and experiment it was found that this phenomenon comes from selective permeability to light of Au thin film rather than the microcavity effect. The device maintains wide viewing angle, without the angular dependence. And the color purity of device with Au thin film is improved.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(4): 906-9, 2014 Apr.
Artículo en Zh | MEDLINE | ID: mdl-25007597

RESUMEN

Inserting metal thin layer into organic electroluminescent device often brings some unexpected effect. By inserting 5 nm Au thin layer between MoO3 and TPD, we prepared the OLED device with the structure of ITO/MoO3(5 nm)/Au(5 nm)/ TPD/AlQ/LiF/Al. The luminous efficiency is improved as compared to the device without the Au. By analysis, we believe that the Au between MoO3 and TPD formed a small trap for hole to reduce the current density in device. At the same time, since the light transmittance of green light (AlQ) of 5 nm Au is greater than 80%, the brightness of the device was not significantly affected. That is the reasons for the improved luminous efficiency. This work provides some new ideas and experimental evidence for how to improve the luminous efficiency of OLED devices.

11.
J Cancer ; 15(8): 2110-2122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495508

RESUMEN

Background: DHEA is a steroid hormone produced by the gonads, adrenal cortex, brain, and gastrointestinal tract. While the anti-obesity, anti-atherosclerosis, anti-cancer, and memory-enhancing effects of DHEA have been substantiated through cell experiments, animal studies, and human trials, the precise mechanisms underlying these effects remain unclear. Altered mitochondrial dynamics can lead to mitochondrial dysfunction, which is closely related to many human diseases, especially cancer and aging. This study was to investigate whether DHEA inhibits lung adenocarcinoma through the mitochondrial pathway and its molecular mechanism. Methods: Through animal experiments and cell experiments, the effect of DHEA on tumor inhibition was determined. The correlation between FASTKD2 expression and DHEA was analyzed by Western blot, Reverse transcription-quantitative PCR, Immunohistochemistry, and TCGA database. Results: In this study, DHEA supplementation in the diet can inhibit the tumor size of mice, and the effect of adding DHEA one week before the experiment is the best. DHEA limits the glycolysis process by inhibiting G6PDH activity, increases the accumulation of reactive oxygen species, and initiates apoptosis in the mitochondrial pathway of cancer cells. Conclusion: DHEA suppresses mitochondrial fission and promotes mitochondrial fusion by downregulating the expression of FASTKD2, thereby inhibiting tumor growth and prolonging the overall survival of lung adenocarcinoma patients, which also provides a new target for the prevention and treatment of lung adenocarcinoma.

12.
Eur J Med Chem ; 265: 116061, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38154256

RESUMEN

A series of ß-carboline derivatives were designed and synthesized by introducing the chalcone moiety into the harmine. The synthesized derivatives were evaluated their anti-proliferative activities against six human cancer cell lines (MCF-7, MDA-MB-231, HepG2, HT29, A549, and PC-3) and one normal cell line (L02). Among them, compound G11 exhibited the potent anti-proliferative activity against MCF-7 cell line, with an IC50 value of 0.34 µM. Further biological studies revealed that compound G11 inhibited colony formation of MCF-7 cells, suppressed MCF-7 cell migration by downregulating migration-associated protein MMP-2. In addition, it could induce apoptosis of MCF-7 cells by downregulating Bcl-2 and upregulating Cleaved-PARP, Bax, and phosphorylated Bim proteins. Furthermore, compound G11 can act as a Topo I inhibitor, affecting DNA synthesis and transcription, thereby inhibiting cancer cell proliferation. Moreover, compound G11 inhibited tumor growth in 4T1 syngeneic transplant mice with an inhibition rate of 43.19 % at a dose of 10 mg/kg, and 63.87 % at 20 mg/kg, without causing significant toxicity to the mice or their organs, achieving the goal of reduced toxicity and increased efficacy. All these results indicate of G11 has enormous potential as an anti-tumor agent and merits further investigation.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Animales , Ratones , Línea Celular Tumoral , Harmina/farmacología , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Antineoplásicos/farmacología , Células MCF-7 , Proliferación Celular , Apoptosis , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad
13.
Biomater Sci ; 12(9): 2321-2330, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38488841

RESUMEN

Nanotherapies, valued for their high efficacy and low toxicity, frequently serve as antitumor treatments, but do not readily penetrate deep into tumor tissues and cells. Here we developed an improved tumor-penetrating peptide (TPP)-based drug delivery system. Briefly, the established TPP iNGR was modified to generate a linear NGR peptide capable of transporting nanotherapeutic drugs into tumors through a CendR pathway-dependent, neuropilin-1 receptor-mediated process. Although TPPs have been reported to reach intended tumor targets, they often fail to penetrate cell membranes to deliver tumoricidal drugs to intracellular targets. We addressed this issue by harnessing cell penetrating peptide technology to develop a liposome-based multibarrier-penetrating delivery system (mbPDS) with improved synergistic drug penetration into deep tumor tissues and cells. The system incorporated doxorubicin-loaded liposomes coated with nona-arginine (R9) CPP and cyclic iNGR (CRNGRGPDC) molecules, yielding Lip-mbPDS. Lip-mbPDS tumor-targeting, tumor cell/tissue-penetrating and antitumor capabilities were assessed using CD13-positive human fibrosarcoma-derived cell (HT1080)-based in vitro and in vivo tumor models. Lip-mbPDS evaluation included three-dimensional layer-by-layer confocal laser scanning microscopy, cell internalization/toxicity assays, three-dimensional tumor spheroid-based penetration assays and antitumor efficacy assays conducted in an animal model. Lip-mbPDS provided enhanced synergistic drug penetration of multiple biointerfaces for potentially deep tumor therapeutic outcomes.


Asunto(s)
Péptidos de Penetración Celular , Doxorrubicina , Sistemas de Liberación de Medicamentos , Liposomas , Humanos , Animales , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Péptidos de Penetración Celular/química , Línea Celular Tumoral , Liposomas/química , Ratones , Portadores de Fármacos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Ratones Desnudos , Péptidos Cíclicos/química , Péptidos Cíclicos/administración & dosificación
14.
Cell Discov ; 10(1): 13, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321019

RESUMEN

Tumor cells are usually considered defective in mitochondrial respiration, but human non-small cell lung cancer (NSCLC) tumor tissues are shown to have enhanced glucose oxidation relative to adjacent benign lung. Here, we reported that oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) inhibited glycolysis and promoted oxidative metabolism in NSCLC cells. CIP2A bound to pyruvate kinase M2 (PKM2) and induced the formation of PKM2 tetramer, with serine 287 as a novel phosphorylation site essential for PKM2 dimer-tetramer switching. CIP2A redirected PKM2 to mitochondrion, leading to upregulation of Bcl2 via phosphorylating Bcl2 at threonine 69. Clinically, CIP2A level in tumor tissues was positively correlated with the level of phosphorylated PKM2 S287. CIP2A-targeting compounds synergized with glycolysis inhibitor in suppressing cell proliferation in vitro and in vivo. These results indicated that CIP2A facilitates oxidative phosphorylation by promoting tetrameric PKM2 formation, and targeting CIP2A and glycolysis exhibits therapeutic potentials in NSCLC.

15.
Surg Open Sci ; 16: 121-126, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37876666

RESUMEN

Duodenal stump fistula (DSF) is a serious complication of radical gastrectomy for gastric cancer. Herein, we illustrated an innovative choice for treating duodenal stump fistulas by placing a modified sump drainage through trocar puncture into the DSF-related abscess (DSF-abscess) cavity. We retrospectively analyzed 974 consecutive patients who underwent gastrectomy for gastric cancer between 2011 and 2021. Of these patients, 34 who developed postoperative duodenal stump fistulas postoperatively were enrolled into our study, and their clinical data were retrospectively assessed. From January 2011 to December 2017, 15 patients received conventional treatments (percutaneous catheter drainage, PCD group) known as the traditional percutaneous method, and 19 patients from January 2018 to December 2021 received new treatments (Troca's SD group) consisting of conventional therapies and placement of a modified sump drainage through trocar puncture into DSF-abscess cavity. The demographics, clinical characteristics and treatment outcomes were compared between two groups. Compared with the PCD group, the rates of postoperative complications, duodenostomy creation, subsequent surgery, fistula healing rates of the DSF, and length of postoperative hospital stay were significantly decreased in the Troca SD group. However, there was no significant difference in the abscess recurrence rate and mortality rates. Trocar puncture with a modified sump drainage is an safe, effective, and technically feasible treatment for duodenal stump fistula after radical gastrectomy for gastric cancer. This novel technique should be further investigated using large-scale RCT research.

16.
Cells ; 11(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36231139

RESUMEN

Ethylene was previously reported to repress stamen development in both cucumber and Arabidopsis. Here, we performed a detailed analysis of the effect of ethylene on anther development. After ethylene treatment, stamens but not pistils display obvious developmental defects which lead to sterility. Both tapetum and microspores (or microsporocytes) degenerated after ethylene treatment. In ein2-1 and ein3-1 eil1-1 mutants, ethylene treatment did not affect their fertility, indicating the effects of ethylene on anther development are mediated by EIN2 and EIN3/EIL1 in vivo. The transcription of EIN2 and EIN3 are activated by ethylene in the tapetum layer. However, ectopic expression of EIN3 in tapetum did not induce significant anther defects, implying that the expression of EIN3 are regulated post transcriptional level. Consistently, ethylene treatment induced the accumulation of EIN3 in the tapetal cells. Thus, ethylene not only activates the transcription of EIN2 and EIN3, but also stabilizes of EIN3 in the tapetum to disturb its development. The expression of several ethylene related genes was significantly increased, and the expression of the five key transcription factors required for tapetum development was decreased after ethylene treatment. Our results thus point out that ethylene inhibits anther development through the EIN2-EIN3/EIL1 signaling pathway. The activation of this signaling pathway in anther wall, especially in the tapetum, induces the degeneration of the tapetum and leads to pollen abortion.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Etilenos/farmacología , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
17.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 11): o2861, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22219901

RESUMEN

The complete mol-ecule of the title compound, C(12)H(10)ClO(2)PS, is generated by crystallographic mirror symmetry, with the P, S and Cl atoms lying on the mirror plane. The resulting PO(2)SCl tetra-hedron is significantly distorted [O-P-O = 96.79 (9)°]. The crystal packing exhibits no directional inter-actions.

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(6): 1454-7, 2011 Jun.
Artículo en Zh | MEDLINE | ID: mdl-21847908

RESUMEN

In the present work, in order to improve electron injection and transport at the interface of the hole blocking layer (HBL) and the electron transport layer (ETL) in the hole-domain solution processed phosphorescent organic light emitting devices (PhOLEDs), the mixed interface layer (MIL) was fabricated by partially co-doping hole blocking material 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and electron transport material tris(8-quinolinolato) aluminum (Alq3) between HBL/ ETL. The MIL thickness was kept at 10nm, while the doping ratio of these two materials varied. Under a given electric field, the devices with the MIL at any mixed ratios all show much higher luminance and current density than those with a typical interface. For example, the luminance power and current density at 10 V for a typical device are 1.03 microW and 5.13 mA x cm(-2), while in case of mixed interface are 3.64 microW and 18.1 mA x cm(-2), respectively. From data results and theoretical analysis, the possible derivation of these improvements is considered to be the reduced electron accumulation at the interface resulting from the reduced electron injection energy barrier and lowered transport mobility by BCP material, which leads to an increase in electron amount in the emission layer and therefore the higher luminance and current density.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(9): 2328-31, 2011 Sep.
Artículo en Zh | MEDLINE | ID: mdl-22097820

RESUMEN

In the present work, the photoluminescence (PL) and electroluminescence (EL) characteristics of Tris[2-(2,4-difluorophenyl)pyridine]iridium(III) (Ir(Fppy)3) doped poly(n-vinylcarbazole) (PVK) with different doping concentrations were investigated. And a blue phosphorescent organic light-emitting diode (OLED) with the structures of ITO/PEDOT : PSS/PVK : Ir(Fppy)3/BCP/Alq3/LiF/Al was fabricated. The experimental results show that the luminescence performances of devices are different as the doping concentration of Ir(Fppy)3 is different. When the doping concentration of Ir(Fppy)3 is lower, the luminescence of PVK can be found in EL spectra. When the doping concentration is too high, concentration quenching may occur. As the doping concentration is suitable, the luminescence of PVK can not be found, only the luminescence of Ir(Fppy)3 can be found in EL spectra. It is concluded that the device with doping concentration of 4% has the best photoelectric performance according to its current density-voltage-luminance curve.

20.
Rice (N Y) ; 14(1): 4, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33409767

RESUMEN

BACKGROUND: During anther development, the tapetum provides essential nutrients and materials for pollen development. In rice, multiple transcription factors and enzymes essential for tapetum development and pollen wall formation have been cloned from male-sterile lines. RESULTS: In this study, we obtained several lines in which the MYB transcription factor OsMS188 was knocked out through the CRISPR-Cas9 approach. The osms188 lines exhibited a male-sterile phenotype with aberrant development and degeneration of tapetal cells, absence of the sexine layer and defective anther cuticles. CYP703A3, CYP704B2, OsPKS1, OsPKS2, DPW and ABCG15 are sporopollenin synthesis and transport-related genes in rice. Plants with mutations in these genes are male sterile, with a defective sexine layer and anther cuticle. Further biochemical assays demonstrated that OsMS188 binds directly to the promoters of these genes to regulate their expression. UDT1, OsTDF1, TDR, bHLH142 and EAT1 are upstream regulators of rice tapetum development. Electrophoretic mobility shift assays (EMSAs) and activation assays revealed that TDR directly regulates OsMS188 expression. Additionally, protein interaction assays indicated that TDR interacts with OsMS188 to regulate downstream gene expression. CONCLUSION: Overall, OsMS188 is a key regulator of tapetum development and pollen wall formation. The gene regulatory network established in this work may facilitate future investigations of fertility regulation in rice and in other crop species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA