Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972042

RESUMEN

Nucleotide-binding leucine-rich repeat (NLR) proteins are crucial intracellular immune receptors in plants, responsible for detecting invading pathogens and initiating defense responses. While previous studies on the evolution and function of NLR genes were mainly limited to land plants, the evolutionary trajectory and immune-activating character of NLR genes in algae remain less explored. In this study, genome-wide NLR gene analysis was conducted on 44 chlorophyte species across seven classes and seven charophyte species across five classes. A few but variable number of NLR genes, ranging from one to 20, were identified in five chlorophytes and three charophytes, whereas no NLR gene was identified from the remaining algal genomes. Compared with land plants, algal genomes possess fewer or usually no NLR genes, implying that the expansion of NLR genes in land plants can be attributed to their adaptation to the more complex terrestrial pathogen environments. Through phylogenetic analysis, domain composition analysis, and conserved motifs profiling of the NBS domain, we detected shared and lineage-specific features between NLR genes in algae and land plants, supporting the common origin and continuous evolution of green plant NLR genes. Immune-activation assays revealed that both TNL and RNL proteins from green algae can elicit hypersensitive responses in Nicotiana benthamiana, indicating the molecular basis for immune activation has emerged in the early evolutionary stage of different types of NLR proteins. In summary, the results from this study suggest that NLR proteins may have taken a role as intracellular immune receptors in the common ancestor of green plants.

2.
J Cell Mol Med ; 28(2): e18049, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37987145

RESUMEN

Derangement of redox condition largely contributes to cardiac ischemia/reperfusion (I/R) injury. FoxO1 is a transcription factor which transcripts a series of antioxidants to antagonize I/R-induced oxidative myocardial damage. N-n-butyl haloperidol iodide (F2 ) is a derivative derived from haloperidol structural modification with potent capacity of inhibiting oxidative stress. This investigation intends to validate whether cardio-protection of F2 is dependent on FoxO1 using an in vivo mouse I/R model and if so, to further elucidate the molecular regulating mechanism. This study initially revealed that F2 preconditioning led to a profound reduction in I/R injury, which was accompanied by attenuated oxidative stress and upregulation of antioxidants (SOD2 and catalase), nuclear FoxO1 and phosphorylation of AMPK. Furthermore, inactivation of FoxO1 with AS1842856 abolished the cardio-protective effect of F2 . Importantly, we identified F2 -mediated nuclear accumulation of FoxO1 is dependent on AMPK, as blockage of AMPK with compound C induced nuclear exit of FoxO1. Collectively, our data uncover that F2 pretreatment exerts significant protection against post ischemic myocardial injury by its regulation of AMPK/FoxO1 pathway, which may provide a new avenue for treating ischemic disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Daño por Reperfusión , Ratones , Animales , Haloperidol/farmacología , Miocardio , Transducción de Señal , Antioxidantes/farmacología
3.
BMC Cancer ; 24(1): 175, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317072

RESUMEN

BACKGROUND: Targeted drugs are the main methods of RCC treatment. However, drug resistance is common in RCC patients, in-depth study of the drug-resistant mechanism is essential. METHODS: We constructed sunitinib resistant and Twist overexpressed A498 cells, and studied its mechanisms in vitro and in vivo. RESULTS: In cell research, we found that either sunitinib resistance or Twist overexpression can activate Wnt/ß-catenin and EMT signaling pathway, and the sunitinib resistance may work through ß-catenin/TWIST/TCF4 trimer. In zebrafish research, we confirmed the similarity of Twist overexpression and sunitinib resistance, and the promoting effect of Twist overexpression on drug resistance. CONCLUSIONS: Sunitinib resistance and Twist overexpression can activate Wnt/ß-catenin signaling pathway and EMT to promote the growth and metastasis of RCC cells.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Humanos , Sunitinib/farmacología , Sunitinib/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo , Pez Cebra/metabolismo , Línea Celular Tumoral , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Transición Epitelial-Mesenquimal/genética , Movimiento Celular , Proliferación Celular
4.
Virol J ; 21(1): 74, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532424

RESUMEN

BACKGROUND: To investigate the efficacy of different doses of corticosteroids in treating severe coronavirus disease 2019 (COVID-19) pneumonia. METHODS: Between May 01, 2023, and June 20, 2023, 48 patients with severe COVID-19 pneumonia were treated at the Department of Respiratory and Critical Care Medicine of Jinan Fourth People's Hospital. The observation group (21 patients) received standard care and high-dose corticosteroids, (high-dose group). The control group (27 patients) received standard care and low-dose corticosteroids (low-dose group). We collected baseline data and recorded inflammatory marker levels after 3 days of treatment, body temperature recovery time, length of stay, and 28-day all-cause mortality. The results of outpatient follow-up were recorded after 1 month. RESULTS: There were no significant differences in 28-day mortality and length of stay. The number of days it took for body temperature to return to normal in the high-dose group was less than in the low-dose group. The high-dose group had significantly more reduced inflammatory factors (C-reactive protein (CRP), interleukin-6 (IL-6). A total of 20 discharged patients were given 8-16 mg of methylprednisolone, depending on chest computed tomography (CT) and clinical symptoms after 1 month; in all discharged patients using oral corticosteroids, CT features improved. CONCLUSION: High-dose corticosteroids had a significantly positive effect on the reduction of inflammatory factors and shortening body temperature recovery time. In the treatment of severe COVID-19 pneumonia, early administration of high-dose, short-course corticosteroids should be implemented.


Asunto(s)
COVID-19 , Neumonía , Humanos , SARS-CoV-2 , Corticoesteroides , Metilprednisolona
5.
J Cardiovasc Pharmacol ; 83(6): 602-611, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579307

RESUMEN

ABSTRACT: N -n-butyl haloperidol iodide (F 2 ), a derivative of haloperidol developed by our group, exhibits potent antioxidative properties and confers protection against cardiac ischemia/reperfusion (I/R) injury. The protective mechanisms by which F 2 ameliorates I/R injury remain obscure. The activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor transactivating many antioxidative genes, also attenuates I/R-induced myocardial damage. The present study investigated whether the cardioprotective effect of F 2 depends on Nrf2 using a mouse heart I/R model. F 2 (0.1, 0.2 or 0.4 mg/kg) or vehicle was intravenously injected to mice 5 minutes before reperfusion. Systemic administration of 0.4 mg/kg F 2 led to a significant reduction in I/R injury, which was accompanied by enhanced activation of Nrf2 signaling. The cardioprotection conferred by F 2 was largely abrogated in Nrf2-deficient mice. Importantly, we found F 2 -induced activation of Nrf2 is silent information regulator of transcription 1 (SIRT1)-dependent, as pharmacologically inhibiting SIRT1 by the specific inhibitor EX527 blocked Nrf2 activation. Moreover, F 2 -upregulated expression of SIRT1 was also Nrf2-dependent, as Nrf2 deficiency inhibited SIRT1 upregulation. These results indicate that SIRT1-Nrf2 signaling loop activation is indispensable for the protective effect of F 2 against myocardial I/R injury and may provide new insights for the treatment of ischemic heart disease.


Asunto(s)
Haloperidol , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Sirtuina 1 , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Sirtuina 1/metabolismo , Sirtuina 1/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Transducción de Señal/efectos de los fármacos , Haloperidol/farmacología , Haloperidol/análogos & derivados , Masculino , Ratones Noqueados , Modelos Animales de Enfermedad , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/enzimología , Antioxidantes/farmacología , Miocardio/metabolismo , Miocardio/patología
6.
Fish Shellfish Immunol ; 145: 109350, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168633

RESUMEN

The transforming growth factor beta regulator 1 (TBRG1) is a growth inhibitory protein that acts as a tumor suppressor in human cancers, gaining its name for the transcriptional regulation by TGF-ß. While extensive research has been conducted on the tumor-related function of TBRG1 in mammals, its significance in invertebrates remains largely unexplored. In this study, a homolog of TBRG1 was first structurally and functionally analyzed in the red swamp crayfish Procambarus clarkii. The full-length cDNA sequence was 2143 base pairs (bp) with a 1305 bp open reading frame (ORF) encoding a deduced protein of 434 amino acids (aa). The changes of PcTBRG1 transcripts upon immune challenges indicated its involvement in innate immunity. After knocking down PcTBRG1, the decline of bacteria clearance capacity revealed the participation of PcTBRG1 in the immune response. Furthermore, the downregulation of AMPs' expression after the cotreatment of RNAi and bacteria challenge suggested that PcTBRG1 might participate in innate immunity through regulating AMPs' expression. These results provided initial insight into the immune-related function of TBRG1 in invertebrates.


Asunto(s)
Astacoidea , Regulación de la Expresión Génica , Humanos , Animales , Secuencia de Aminoácidos , Inmunidad Innata/genética , Interferencia de ARN , Proteínas de Artrópodos/genética , Mamíferos , Proteínas Nucleares/genética , Péptidos y Proteínas de Señalización Intracelular/genética
7.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396734

RESUMEN

Dioscorea alata L. (Dioscoreaceae) is a widely cultivated tuber crop with variations in tuber color, offering potential value as health-promoting foods. This study focused on the comparison of D. alata tubers possessing two distinct colors, white and purple, to explore the underlying mechanisms of color variation. Flavonoids, a group of polyphenols known to influence plant color and exhibit antioxidant properties, were of particular interest. The total phenol and total flavonoid analyses revealed that purple tubers (PTs) have a significantly higher content of these metabolites than white tubers (WTs) and a higher antioxidant activity than WTs, suggesting potential health benefits of PT D. alata. The transcriptome analysis identified 108 differentially expressed genes associated with the flavonoid synthesis pathway, with 57 genes up-regulated in PTs, including CHS, CHI, DFR, FLS, F3H, F3'5'H, LAR, ANS, and ANR. The metabolomics analysis demonstrated that 424 metabolites, including 104 flavonoids and 8 tannins, accumulated differentially in PTs and WTs. Notably, five of the top ten up-regulated metabolites were flavonoids, including 6-hydroxykaempferol-7-O-glucoside, pinocembrin-7-O-(6″-O-malonyl)glucoside, 6-hydroxykaempferol-3,7,6-O-triglycoside, 6-hydroxykaempferol-7-O-triglycoside, and cyanidin-3-O-(6″-O-feruloyl)sophoroside-5-O-glucoside, with the latter being a precursor to anthocyanin synthesis. Integrating transcriptome and metabolomics data revealed that the 57 genes regulated 20 metabolites within the flavonoid synthesis pathway, potentially influencing the tubers' color variation. The high polyphenol content and antioxidant activity of PTs indicate their suitability as nutritious and health-promoting food sources. Taken together, the findings of this study provide insights into the molecular basis of tuber color variation in D. alata and underscore the potential applications of purple tubers in the food industry and human health promotion. The findings contribute to the understanding of flavonoid biosynthesis and pigment accumulation in D. alata tubers, opening avenues for future research on enhancing the nutritional quality of D. alata cultivars.


Asunto(s)
Dioscorea , Transcriptoma , Humanos , Dioscorea/genética , Dioscorea/metabolismo , Antioxidantes , Antocianinas/metabolismo , Flavonoides , Perfilación de la Expresión Génica , Metabolómica , Glucósidos , Color , Regulación de la Expresión Génica de las Plantas
8.
J Environ Manage ; 360: 120958, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744206

RESUMEN

To safeguard aquatic ecosystems and fishery resources while facilitating cooperative engagement between local governments and fishermen, an evolutionary game model featuring both stakeholders has been constructed in this study. The model examines the degree of compliance with ecological restoration policies linked to fishing bans, as well as the adaptive strategies of different types of fishermen with varied incentives while simulating the ecological restoration policy under diverse scenarios. The findings suggest that: (1) Compliance with the fishing ban policy among fishermen is determined by their economic interests, environmental preferences, and government regulations, while its enforcement by local authorities is influenced by regulatory costs, political performance, and reputation. (2) Variations in the ecological restoration policy of fishing bans result from several factors, including punitive measures and compensation. The higher the penalty, the greater the chance of compliance among fishermen, and the higher the restoration degree of the watershed ecosystem. Conversely, the higher the compensation, the more satisfied the fishermen are with the fishing ban policy, and the smoother the transformation of their livelihoods. (3) To enhance the effectiveness and sustainability of fishing bans, it is essential to consider the interests of multiple stakeholders and adopt a coordination mechanism that facilitates the design of a reasonable and effective incentive-compatible system, thereby increasing the fairness and acceptability of the policy. This study provides a new theoretical framework and methodology applicable to ecological restoration policies for fishery closures on a global scale, accompanied by robust data support and theoretical guidance for developing and implementing fishery closure policies.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Explotaciones Pesqueras , Explotaciones Pesqueras/legislación & jurisprudencia , Ecología , Humanos , Gobierno
9.
Zhongguo Zhong Yao Za Zhi ; 49(1): 70-79, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403340

RESUMEN

Flavonoid C-glycosides are a class of natural products that are widely involved in plant defense responses and have diverse pharmacological activities. They are also important active ingredients of Dendrobium huoshanense. Flavanone synthase Ⅱ has been proven to be a key enzyme in the synthesis pathway of flavonoid C-glycosides in plants, and their catalytic product 2-hydroxyflavanone is the precursor compound for the synthesis of various reported flavonoid C-glycosides. In this study, based on the reported amino acid sequence of flavanone synthase Ⅱ, a flavanone synthase Ⅱ gene(DhuFNSⅡ) was screened and verified from the constructed D. huoshanense genome localization database. Functional validation of the enzyme showed that it could in vitro catalyze naringenin and pinocembrin to produce apigenin and chrysin, respectively. The open reading frame(ORF) of DhuFNSⅡ was 1 644 bp in length, encoding 547 amino acids. Subcellular localization showed that the protein was localized on the endoplasmic reticulum. RT-qPCR results showed that DhuFNSⅡ had the highest expression in stems, followed by leaves and roots. The expression levels of DhuFNSⅡ and other target genes in various tissues of D. huoshanense were significantly up-regulated after four kinds of abiotic stresses commonly encountered in the growth process, but the extent of up-regulation varied among treatment groups, with drought and cold stress having more significant effects on gene expression levels. Through the identification and functional analysis of DhuFNSⅡ, this study is expected to contribute to the elucidation of the molecular mechanism of the formation of quality metabolites of D. huoshanense, flavonoid C-glycosides, and provide a reference for its quality formation and scientific cultivation.


Asunto(s)
Dendrobium , Flavanonas , Dendrobium/genética , Dendrobium/química , Flavanonas/metabolismo , Flavonoides , Clonación Molecular , Glicósidos/metabolismo
10.
J Proteome Res ; 22(7): 2450-2459, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37347238

RESUMEN

Salvianolic acid A (SAA), a major active ingredient of Salvia miltiorrhiza Bunge (Danshen), displays strong antiproliferative activity against cancer cells. However, their protein targets remain unknown. Here, we deconvoluted the protein targets of SAA using chemoproteomics and phosphoproteomics. By using alkynylated SAA as a probe, we discovered that SAA is a covalent ligand that can modify cellular proteins via its electrophilic α,ß-unsaturated ester moiety. The subsequent chemoproteomics profiling revealed that 46 proteins were covalently modified by SAA, including Raptor, a subunit of mTORC1 for recruiting substrates for mTORC1. Although gene ontology enrichment analysis of these proteins suggested that SAA displays a promiscuous protein interaction, phosphoproteomics profiling revealed that the SAA modulated phosphoproteins were mainly enriched in the signaling pathways of PI3K-Akt-mTOR, which is closely related to cell growth and proliferation. This was confirmed by the biochemical assay with purified mTORC1, a Western blot assay with phospho-specific antibodies, and a cellular thermal shift assay. Our work discovered that SAA is a covalent ligand for protein modification and mTORC1 is one of its targets. Moreover, our work demonstrated that the integrative profiling of chemoproteomics and phosphoproteomics can be a powerful tool for target deconvolution for bioactive natural products.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina , Ligandos , Ácidos Cafeicos/farmacología
11.
BMC Genomics ; 24(1): 669, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936069

RESUMEN

BACKGROUND: Purple curl leaf disease brings a significant threat to the development of agave industry, the underlying mechanism of disease-resistant Agave sisalana. hybrid 11648 (A. H11648R) is still unknown. RESULTS: To excavate the crucial disease-resistant genes against purple curl leaf disease, we performed an RNA-seq analysis for A.H11648R and A.H11648 during different stages of purple curl leaf disease. The DEGs (differentially expressed genes) were mainly enriched in linolenic acid metabolism, starch and sucrose mechanism, phenylpropanoid biosynthesis, hypersensitive response (HR) and systemic acquired resistance. Further analysis suggested that eight candidate genes (4'OMT2, ACLY, NCS1, GTE10, SMO2, FLS2, SQE1 and RCOM) identified by WGCNA (weighted gene co-expression network analysis) may mediate the resistance to agave purple curl disease by participating the biosynthesis of benzylisoquinoline alkaloids, steroid, sterols and flavonoids, and the regulation of plant innate immunity and systemic acquired resistance. After qPCR verification, we found that AsRCOM, coding a glycosyltransferase and relevant to the regulation of plant innate immunity and systemic acquired resistance, may be the most critical disease-resistant gene. Finally, the overexpression of AsRCOM gene in agave could significantly enhance the resistance to purple curl disease with abundant reactive oxygen species (ROS) accumulations. CONCLUSIONS: Integrative RNA-seq analysis found that HR may be an important pathway affecting the resistance to purple curl leaf disease in agave, and identified glycosyltransferase AsRCOM as the crucial gene that could significantly enhance the resistance to purple curl leaf disease in agave, with obvious ROS accumulations.


Asunto(s)
Agave , Agave/genética , Especies Reactivas de Oxígeno , Perfilación de la Expresión Génica , Inmunidad de la Planta/genética , Hojas de la Planta/genética , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
12.
Cancer Sci ; 114(5): 1972-1985, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36692143

RESUMEN

The Brother of Regulator of Imprinted Sites (BORIS, gene symbol CTCFL) has previously been shown to promote colorectal cancer cell proliferation, inhibit cancer cell apoptosis, and resist chemotherapy. However, it is unknown whether Boris plays a role in the progression of in situ colorectal cancer. Here Boris knockout (KO) mice were constructed. The function loss of the cloned Boris mutation that was retained in KO mice was verified by testing its activities in colorectal cell lines compared with the Boris wild-type gene. Boris knockout reduced the incidence and severity of azoxymethane/dextran sulfate-sodium (AOM/DSS)-induced colon cancer. The importance of Boris is emphasized in the progression of in situ colorectal cancer. Boris knockout significantly promoted the phosphorylation of γH2AX and the DNA damage in colorectal cancer tissues and suppressed Wnt and MAPK pathways that are responsible for the callback of DNA damage repair. This indicates the strong inhibition of colorectal cancer in Boris KO mice. By considering that the DSS-promoted inflammation contributes to tumorigenesis, Boris KO mice were also studied in DSS-induced colitis. Our data showed that Boris knockout alleviated DSS-induced colitis and that Boris knockdown inhibited the NF-κB signaling pathway in RAW264.7 cells. Therefore Boris knockout eliminates colorectal cancer generation by inhibiting DNA damage repair in cancer cells and relieving inflammation in macrophages. Our findings demonstrate the importance of Boris in the development of in situ colorectal cancer and provide evidence for the feasibility of colorectal cancer therapy on Boris.


Asunto(s)
Colitis , Neoplasias Colorrectales , Animales , Masculino , Ratones , Azoximetano/toxicidad , Colitis/inducido químicamente , Colitis/genética , Colitis/complicaciones , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Sulfato de Dextran/uso terapéutico , Modelos Animales de Enfermedad , Daño del ADN/genética , Inflamación/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Funct Integr Genomics ; 24(1): 1, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063920

RESUMEN

This study was designed to investigate the role of a disintegrin and metalloproteinase domain-like protein decysin 1 (ADAMDEC-1) in atherosclerosis (AS). The Gene Expression Omnibus (GEO) database was utilized to identify differentially expressed genes (DEGs) between carotid atheroma plaque and carotid tissue adjacent atheroma plaque obtained from AS patients. Gene functional enrichment analysis was conducted on DEGs using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). QRT-PCR was employed to quantify mRNAs expression. AS animal model was established using ApoE-/- mice; serum triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were detected. Aortic sinus atherosclerotic lesions were observed using H&E staining and Oil Red O staining. ADAMDEC-1 was silenced using small interfering RNAs (siRNAs) in human vascular smooth muscle cells (HVSMCs). Cell proliferation, migration, and cell cycle progression were detected by cell count kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EDU), wound scratch healing assay, transwell assay, and flow cytometry, respectively. Western blot was used to evaluate various protein expression levels. Our results showed that ADAMDEC-1 was highly expressed in the serum of AS patients, consistent with the in silico results. The elevated TG, LDL-C, and HDL-C levels along with H&E and Oil Red O staining confirmed the successful establishment of the AS mouse model. ADAMDEC-1 expression was also elevated in AS mice. ADAMDEC-1 knockdown in HVSMCs suppressed cell proliferation, inhibited the expression of proliferating cell nuclear antigen (PCNA), and reduced the levels of matrix metalloproteinases (MMP2 and MMP9) proteins. Protein-protein interaction (PPI) analysis indicated that ADAMDEC-1 was associated with CXCL9, CCR5, TNF-α, TNFR1, and NF-κB-p50. The expression levels of CXCL9, CCR5, TNF-α, TNFR1, and NF-κB-p50 increased, while ADAMDEC-1 knockdown attenuated the expression of these proteins. Our study findings substantiate that ADAMDEC-1 may represent a novel target for AS.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Humanos , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Proliferación Celular/genética , LDL-Colesterol/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , FN-kappa B , Placa Aterosclerótica/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , ARN Interferente Pequeño/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Pharmacol Res ; 195: 106896, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37633511

RESUMEN

Tumor metastasis causes over 90% of cancer related death and no currently available therapies target it. However, there is limited understanding regarding the epigenetic regulation of genes during this complex process. Here by integrating single-cell ATAC-seq (scATAC-seq), single-cell RNA-seq (scRNA-seq), microarray, bulk RNA-seq, immunohistochemistry (IHC) staining, as well as proteomics datasets from paired primary and liver metastatic colorectal cancer (CRC) patient-derived xenograft (PDX) model and patients, we discovered that liver metastatic CRC cells lose their colon-specific chromatin accessible sites yet gain liver-specific ones. Importantly, we observed elevated accessibility of HNF4A, a liver-specific transcription factor, in liver metastatic CRC cells. Subsequently, we performed clustering analysis of liver metastatic CRC cells together with cells involved in liver development, revealing significant heterogeneity among the liver metastatic CRC cells. Over 50% of the liver metastatic CRC cells exhibited characteristics similar to those of erythroid progenitors and hepatocytes, showing increased expression of genes involved in oxidative phosphorylation and glycolysis. Moreover, our discovery further revealed that the MHC and IFN response genes in these cells exhibit moderate epigenetic activity, which is significantly associated with the low objective response rates in checkpoint blockade immunotherapy. Our findings uncovered the critical roles of HNF4A and the cell populations within liver metastatic CRC cells might serve as crucial therapeutic targets for addressing liver metastasis and improving the immunotherapy response in patients with CRC.


Asunto(s)
Neoplasias del Colon , Neoplasias Hepáticas , Humanos , Animales , Cromatina , Epigénesis Genética , Neoplasias Hepáticas/genética , Modelos Animales de Enfermedad
15.
Fish Shellfish Immunol ; 140: 108931, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37437824

RESUMEN

Endoplasmic reticulum oxidoreductase 1 (ERO1) is an important mediator in regulating disulfide bond formation and maintaining endoplasmic reticulum homeostasis. Its activity is transcriptionally regulated by the unfolded protein response (UPR) in the endoplasmic reticulum, which is known to be essential in immunity. However, whether ERO1 is involved in innate immunity in invertebrates remains unclear. In the present study, two subtypes of ERO1 from Scylla paramamosain were first identified and characterized. Sequence analysis revealed the conserved ERO1 domain and the oxidative capacity assay verified the oxidative capacity of SpERO1 recombinant protein. Moreover, SpERO1s were found to be ubiquitously expressed in all the tested tissues, with the highest expression observed in hemocytes. Two SpERO1s exhibited distinct expression patterns in response to Vibrio alginolyticus and White Spot Syndrome Virus (WSSV). Importantly, the downregulation of the expression of immune factors upon bacterial challenge in SpERO1-silenced crabs was observed. These results provided an initial foundation for further investigations into the role of ERO1 in the innate immunity of invertebrates.


Asunto(s)
Braquiuros , Animales , Oxidorreductasas , Inmunidad Innata/genética , Bacterias/metabolismo , Proteínas Recombinantes , Proteínas de Artrópodos , Filogenia , Hemocitos , Perfilación de la Expresión Génica
16.
Fish Shellfish Immunol ; 140: 108944, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37451527

RESUMEN

Cytosolic phospholipase A2 (cPLA2) specifically liberates the arachidonic acids from the phospholipid substrates. In mammals, cPLA2 serves as a key control point in inflammatory responses due to its diverse downstream products. However, the role of cPLA2 in animals lower than mammals largely remains unknown. In the current research, a homolog of cPLA2 was first identified and characterized in the red swamp crayfish Procambarus clarkii. The full-length cDNA of PccPLA2 was 4432 bp in length with a 3036 bp-long open reading frame, encoding a putative protein of 1011 amino acids that contained a protein kinase C conserved region 2 and a catalytic subunit of cPLA2. PccPLA2 was ubiquitously expressed in all examined tissues with the highest expression in the hepatopancreas, and the expression in hemocytes as well as hepatopancreas was induced upon the immune challenges of WSSV and Aeromonas hydrophila. After the co-treatment of RNA interference and bacterial infection, the decline of bacteria clearance capability was observed in the hemolymph, and the expression of some antimicrobial peptides (AMPs) was significantly suppressed. Additionally, the phagocytosis of A. hydrophila by primary hemocytes decreased when treated with the specific inhibitor CAY10650 of cPLA2. These results indicated the participation of PccPLA2 in both cellular and humoral immune responses in the crayfish, which provided an insight into the role that cPLA2 played in the innate immunity of crustaceans, and even in invertebrates.


Asunto(s)
Astacoidea , Inmunidad Innata , Animales , Secuencia de Aminoácidos , Inmunidad Innata/genética , Fosfolipasas A2 , Fosfolipasas A2 Citosólicas , Proteínas de Artrópodos , Mamíferos
17.
Fish Shellfish Immunol ; 143: 109183, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884105

RESUMEN

Smad,a member of the TGF-ß superfamily,controls cell proliferation,growth and guiding cell differentiation, thus playing a crucial role in diseases. However, the presence as well as specific function of Smad in crabs is still unknown. In this study, two Smads (Smad1 and Smad2/3) were identified for the first time from the mud crab Scylla paramamosain. The complete open reading frames of SpSmad1 and SpSmad2/3 were 1,497bp and 1,338bp, encoding deduced proteins of 498 and 445 amino acids respectively. Moreover, under the administration of Vibrio alginolyticus and WSSV, the relative expression levels of SpSmad1 and SpSmad2/3 were significantly increased, indicating their involvement in the innate immune response of mud crabs. Knockdown of SpSmad1 and SpSmad2/3 in vivo not only led to the increasement of the expressions of NF-κB signaling genes and antimicrobial peptides genes, but also significantly affected the bacterial clearance process of mud crabs. Additionally, overexpression of SpSmad1 and SpSmad2/3 in HEK293T cells could markedly activate NF-κB signaling. These results indicated that Smad1 and Smad2/3 participated in the innate immunity of Scylla paramamosain, and might provide a better understanding of the presence and immune regulatory functions of Smad1 and Smad2/3 in crabs and even invertebrates.


Asunto(s)
Braquiuros , FN-kappa B , Humanos , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Drosophila/genética , Drosophila/metabolismo , Células HEK293 , Filogenia , Proteínas de Artrópodos , Inmunidad Innata/genética , Perfilación de la Expresión Génica
18.
J Invertebr Pathol ; 196: 107865, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36436575

RESUMEN

FGFRs involved multiple physiological processes, such as endocrine homeostasis, wound repair, and cellular behaviors including proliferation, differentiation and survival. In the present study, the homologs of fibroblast growth factor receptor 4 (FGFR4) were identified and characterized from the red swamp crayfish Procambarus clarkii for the first time. The full-length cDNAs of pcFGFR4 were 2878 bp with 2451 bp open reading frame (ORF), respectively. The deduced pcFGFR4 protein contained an immunoglobulin, two immunoglobulin C-2 Type, a transmembrane region and a catalytic domain. Real-time PCR analysis showed that pcFGFR4 were highly expressed in muscle and hemocyte. Moreover, the expression levels of pcFGFR4 in the hepatopancreas and hemocyte were positively stimulated after challenge with Aeromonas hydrophila and WSSV, implying the involvement of pcFGFR4 against bacterial and viral infections in innate immune responses. While pcFGFR4 were silenced in vivo, the expression levels of antimicrobial peptide (AMP) genes (pcALF1-5,8 and pcCrustin1-2) and NF-κB signaling components (pcDrosal and pcRelish) were significantly reduced. Additionally, NF-κB signaling could be markedly activated by overexpression of pcFGFR4 in HEK293T cells. Finally, our results indicated that pcFGFR4 regulated crayfish's innate immunity by modulating NF-κB signaling. These findings may provide new insights into pcFGFR4-mediated signaling cascades in crustaceans and provide a better understanding of crustacean innate immune system.


Asunto(s)
Antivirales , Astacoidea , Animales , Humanos , Astacoidea/microbiología , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , FN-kappa B/genética , Células HEK293 , Perfilación de la Expresión Génica , Inmunidad Innata/genética , Proteínas de Artrópodos
19.
Plant Dis ; 107(3): 893-895, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36265140

RESUMEN

Anthracnose disease is one of the most important diseases of Dioscorea alata and many other food yams, which is caused by Colletotrichum gloeosporioides fungus from the Glomerellaceae family of the Sordariomycetes class. In the present study, a C. gloeosporioides starin named CgDa01 was isolated from D. alata, and its genome was sequenced based on Oxford Nanopore technology (ONT) and the Illumina sequencing platform. The high-quality genome of CgDa01 was assembled with a 62.78 Mb genome size and 15,845 predicted protein-coding genes. The proteins of predicted genes were annotated using multiple public databases, including the nonredundant protein database, the InterProScan databases, and Kyoto Encyclopedia of Genes and Genomes. Among the annotated protein-coding genes, 55 were predicted as potential virulence genes by the fungal virulence factor database. The C. gloeosporioides CgDa01 genome assembly described in this study can serve as a resource for better understanding the pathogenic mechanism of C. gloeosporioides on yam hosts.


Asunto(s)
Colletotrichum , Dioscorea , Dioscorea/genética , Dioscorea/microbiología , Enfermedades de las Plantas/microbiología , Colletotrichum/genética , Virulencia
20.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834753

RESUMEN

Dioscorea alata L. (Dioscoreaceae), commonly known as greater yam, water yam, or winged yam, is a popular tuber vegetable/food crop worldwide, with nutritional, health, and economical importance. China is an important domestication center of D. alata, and hundreds of cultivars (accessions) have been established. However, genetic variations among Chinese accessions remain ambiguous, and genomic resources currently available for the molecular breeding of this species in China are very scarce. In this study, we generated the first pan-plastome of D. alata, based on 44 Chinese accessions and 8 African accessions, and investigated the genetic variations, plastome evolution, and phylogenetic relationships within D. alata and among members of the section Enantiophyllum. The D. alata pan-plastome encoded 113 unique genes and ranged in size from 153,114 to 153,161 bp. A total of four whole-plastome haplotypes (Haps I-IV) were identified in the Chinese accessions, showing no geographical differentiation, while all eight African accessions shared the same whole-plastome haplotype (Hap I). Comparative genomic analyses revealed that all four whole plastome haplotypes harbored identical GC content, gene content, gene order, and IR/SC boundary structures, which were also highly congruent with other species of Enantiophyllum. In addition, four highly divergent regions, i.e., trnC-petN, trnL-rpl32, ndhD-ccsA, and exon 3 of clpP, were identified as potential DNA barcodes. Phylogenetic analyses clearly separated all the D. alata accessions into four distinct clades corresponding to the four haplotypes, and strongly supported that D. alata was more closely related to D. brevipetiolata and D. glabra than D. cirrhosa, D. japonica, and D. polystachya. Overall, these results not only revealed the genetic variations among Chinese D. alata accessions, but also provided the necessary groundwork for molecular-assisted breeding and industrial utilization of this species.


Asunto(s)
Dioscorea , Filogenia , Genómica , Haplotipos , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA