Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(22): e2306536, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38168889

RESUMEN

Effective strategies toward building exquisite nanostructures with enhanced structural integrity and improved reaction kinetics will carry forward the practical application of alloy-based materials as anodes in batteries. Herein, a free-standing 3D carbon nanofiber (CNF) skeleton incorporated with heterostructured binary metal selenides (ZnSe/SnSe) nanoboxes is developed for Na-ion storage anodes, which can facilitate Na+ ion migration, improve structure integrity, and enhance the electrochemical reaction kinetics. During the carbonization and selenization process, selenium/nitrogen (Se/N) is co-doped into the 3D CNF skeleton, which can improve the conductivity and wettability of the CNF matrices. More importantly, the ZnSe/SnSe heterostructures and the Se/N co-doping CNFs can have a synergistic interfacial coupling effect and built-in electric field in the heterogeneous interfaces of ZnSe/SnSe hetero-boundaries as well as the interfaces between the CNF matrix and the selenide heterostructures, which can enable fast ion/electron transport and accelerate surface/internal reaction kinetics for Na-ion storage. The ZnSe/SnSe@Se,N-CNFs exhibit superior Na-ion storage performance than the comparative ZnSe/SnSe, ZnSe and SnSe powders, which deliver an excellent rate performance (882.0, 773.6, 695.7, 634.2, and 559.0 mAh g-1 at current rates of 0.1, 0.2, 0.5, 1, and 2 A g-1) and long-life cycling stability of 587.5 mAh g-1 for 3500 cycles at 2 A g-1.

2.
Inorg Chem ; 63(30): 14231-14240, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39012645

RESUMEN

The huge application potential of nanoelectrocatalysts can become available only under the condition of scalable and reproducible preparation of nanomaterials (NMs). It is easily overlooked that most of the preparation methods for efficient platinum (Pt)-based electrocatalysts are complicated in process and time-/energy-consuming, which is not conducive to scalable and sustainable production. Herein, we propose a rapid and facile method to in situ construct a heterointerface between nickel hydroxide (Ni(OH)2) and NiPt alloy, in which the preparation steps are easy-to-operate and can be finished in 1 h. Furthermore, the ensemble effect between the Ni(OH)2 substrate and NiPt active sites benefits the water dissociation process in nonacidic conditions, while the electronic effect in NiPt contributes to the downshifted d-band center of Pt and the proper Gibbs free energy of hydrogen species. As a result, the well-designed and quickly constructed Ni(OH)2-Ni3Pt heterointerfaces reveal lower overpotentials for HER compared with most reported Pt-based and commercial Pt/C catalysts in nonacidic conditions. This study is expected to provide useful reference information for the development of facile and robust methods for the preparation of more efficient Pt-based electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA