Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chemistry ; 30(24): e202304209, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38372165

RESUMEN

It is challenging to realize the selective C-C bond cleavage of lignin ß-O-4 linkages for production of high-value aromatic chemicals due to its intrinsic inertness and complex structure. Here we report a light-driven, chlorine-radical-based protocol to realize the oxidative C-C bond cleavage in various lignin model compounds catalyzed by commercially available TPT and CaCl2, achieving high conversion and good to high product yields at room temperature. Mechanistic studies reveal that the preferential activation of Cß-H bond facilitates the oxidation and C-C bond cleavage of lignin ß-O-4 model via chlorine radical. Furthermore, this method is also applicable to the depolymerization of natural lignin extracts, furnishing the aromatic oxygenates from the cleavage of Cα-Cß bonds. This study provides experimental foundations to the depolymerization and valorization of lignin into high value-added aromatic compounds.

2.
Angew Chem Int Ed Engl ; 63(16): e202401265, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38390752

RESUMEN

It remains challenging to synthesize all-(meth)acrylic triblock thermoplastic elastomers (TPEs), due to the drastically different reactivities between the acrylates and methacrylates and inevitable occurrence of side reactions during polymerization of acrylates. By taking advantage of the easy structural modulation features of N-heterocyclic olefins (NHOs), we design and synthesize strong nucleophilic tetraphenylethylene-based NHOs varying in the number (i.e. mono-, dual- and tetra-) of initiating functional groups. Its combination with bulky organoaluminum [iBuAl(BHT)2] (BHT=bis(2,6-di-tBu-4-methylphenoxy)) constructs Lewis pair (LP) to realize the living polymerization of both acrylates and methacrylates, furnishing polyacrylates with ultrahigh molecular weight (Mn up to 2174 kg ⋅ mol-1) within 4 min. Moreover, these NHO-based LPs enable us to not only realize the control over the polymers' topology (i.e. linear and star), but also achieve triblock star copolymers in one-step manner. Mechanical studies reveal that the star triblock TPEs exhibit better mechanical properties (elongation at break up to 1863 % and tensile strength up to 19.1 MPa) in comparison with the linear analogs. Moreover, the presence of tetraphenylethylene group in the NHOs entitled the triblock TPEs with excellent AIE properties in both solution and solid state.

3.
Angew Chem Int Ed Engl ; 62(8): e202218248, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36577704

RESUMEN

Rapid access to sequence-controlled multi-block copolymers (multi-BCPs) remains as a challenging task in the polymer synthesis. Here we employ a Lewis pair (LP) composed of organophosphorus superbase and bulky organoaluminum to effectively copolymerize the mixture of methacrylate, cyclic acrylate, and two acrylates, into well-defined di-, tri-, tetra- and even a hepta-BCP in one-pot one-step manner. The combined livingness, dual-initiation and CSC feature of Lewis pair polymerization enable us to achieve not only a trihexaconta-BCP with the highest record in 8 steps by using four-component monomer mixture as building blocks, but also the arbitrarily-regulated monomer sequence in multi-BCP, simply by changing the composition and adding order of the monomer mixtures, thus demonstrating the powerful capability of our strategy in improving the efficiency and enriching the composition of multi-BCP synthesis.

4.
Macromol Rapid Commun ; 43(16): e2200088, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35363417

RESUMEN

It remains as a great challenge to realize living and controlled polymerization of renewable monomers by the boron-based Lewis pairs. Here, strong nucleophilic N-heterocyclic olefins (NHOs) or N-heterocyclic carbenes (NHCs) as Lewis bases, and boron-based compounds as Lewis acids, are employed to construct LPs for polymerization of alkyl sorbates, including (E, E)-methyl sorbate and (E, E)-ethyl sorbate. Systematic investigation reveals that the combinations of B(C6 F5 )3  with appropriate acidity and steric hindrance, and strong nucleophilic NHOs promote living and controlled polymerization of alkyl sorbates in 100% 1,4-addition manner, furnishing polymers with predicted molecular weight (Mw up to 56.6 kg mol-1 ) and narrow molecular weight distribution (D as low as 1.12). Furthermore, topology analysis shows that NHC1/B(C6 F5 )3  LP produce PMS possessing cyclic structure.


Asunto(s)
Boro , Ácidos de Lewis , Alquenos/química , Catálisis , Ácidos de Lewis/química , Estructura Molecular , Polimerizacion
5.
Angew Chem Int Ed Engl ; 61(8): e202114946, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-34904337

RESUMEN

This work utilizes frustrated Lewis pairs consisting of tethered bis-organophosphorus superbases and a bulky organoaluminum to furnish the highly efficient synthesis of well-defined triblock copolymers via one-step block copolymerization of lignin-based syringyl methacrylate and n-butyl acrylate, through di-initiation and compounded sequence control. The resulting thermoplastic elastomers (TPEs) exhibit microphase separation and much superior mechanical properties (elongation at break up to 2091 %, tensile strength up to 11.5 MPa, and elastic recovery up to 95 % after 10 cycles) to those of methyl methacrylate-based TPEs. More impressively, lignin-based tri-BCPs can maintain TPEs properties up to 180 °C, exhibit high transparency and nearly 100 % UV shield, suggesting potential applications in temperature-resistant and optical devices.

6.
Angew Chem Int Ed Engl ; 61(24): e202202448, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35349218

RESUMEN

Lewis pair polymerization has demonstrated its unique advantages and powerful capability in polymer synthesis. Here we employ strong nucleophilic N-heterocyclic olefin (NHO) and bulky organoaluminum to construct a frustrated Lewis pair, which can realize the compounded sequence control (CSC) copolymerization and self-assembly the mixture of dimethylaminoethyl acrylate and fluoride-functionalized methacrylate into diblock copolymers (di-BCPs) nano-assemblies through polymerization-induced self-assembly in one-pot, single-step manner within minutes. These di-BCPs were characterized by 1 H and 13 C NMR, GPC, DSC, and TEM. By utilizing appropriate solvophilic block and solvophobic block, such Lewis pair polymerization-induced self-assembly strategy enables the expeditious, room-temperature synthesis of di-BCP nanoparticles with different morphologies, including spheres, worms, vesicles, and even fibers, thus suggesting the great application potential of such method in the future.

7.
Macromol Rapid Commun ; 42(3): e2000491, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33200483

RESUMEN

The microstructure can significantly affect the physical and mechanical properties of polymers. Five chiral binuclear aluminum methyl complexes (rac1 to rac5) are synthesized by using chiral binaphthalene diamine ligand and characterized by both 1 H and 13 C NMR spectroscopy. The crystal structures of rac3 and rac5 are also identified by single crystal X-ray diffraction. In the presence of i PrOH initiator, these aluminum complexes catalyze the ring-opening polymerization (ROP) of rac-lactide (rac-LA) in a controlled manner and produce polymers with high to excellent isoselectivity (Pm up to 0.93). Even with a catalyst loading as low as 0.1%, polylactide with a Pm of 0.83 can still be obtained. Kinetic studies reveal the first-order dependence on monomer concentration whereas kinetic resolution polymerization provides the evidence to support that these binuclear aluminum catalysts catalyzed ROP of rac-LA adopts enantiomorphic site control mechanism. Furthermore, this strategy can also be applied to the ROP of both ε-caprolactone and δ-valeroactone.


Asunto(s)
Aluminio , Catálisis , Dioxanos , Cinética , Polimerizacion
8.
Angew Chem Int Ed Engl ; 60(45): 24306-24311, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34510679

RESUMEN

In this contribution, Lewis pairs (LPs) composed of N-heterocyclic olefins (NHOs) with different steric hindrance and nucleophilicity as Lewis bases (LBs) and Al-based compounds with comparable acidity but different steric hindrance as Lewis acids (LAs) were applied for 1,4-selective polymerization of (E,E)-methyl sorbate (MS) and (E,E)-ethyl sorbate (ES). The effects of steric hindrance, electron-donating ability, and acidity of LPs on MS and ES polymerization were systematically investigated. High catalytic activity and high initiation efficiency can be achieved, leading to the formation of PMS with 100 % 1,4-selectivity, tunable molecular weight (Mw up to 333 kg mol-1 ), and narrow molecular weight distribution (MWD). Block copolymerization of ES and methyl methacrylate (MMA) was also realized. Meanwhile, this system can be applied to other homologous conjugated diene substrates. Furthermore, simple chemical reactions can efficiently convert PMS to different polymers with strict (AB)n sequence structures, such as poly(sorbic acid), poly(propylene-alt-methyl acrylate), poly(propylene-alt-acrylic acid), poly(propylene-alt-allyl alcohol), and poly(ethylene-alt-2-butylene).

9.
Macromol Rapid Commun ; 41(24): e2000456, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33196123

RESUMEN

It is challenging to synthesize stimuli-responsive materials with the well-balanced performance of fast stimulus-response speed, good mechanical strength, multi-functionality, and deformation diversity as well. This work reports a facile, one-step thiol-ene click polymerization strategy for preparation of water/acetone vapor-responsive hierarchical films, by using diallyl terephthalate (P) as hydrophobic ene-monomer, 1,4-diallyl-1,4-diazabicyclo [2.2.2]octane-1,4-diium bromide (B) as hydrophilic ene-monomer, and pentaerythritol tetra(3-mercaptopropionate) (PETMP) as thiol monomer. Besides, by taking advantage of the specific hydrophilic/hydrophobic induction effect of substrate and adjusting the molar ratio of P to B, P60 B40 -HPI film is fabricated on hydrophilic substrate "with plasma treatment" whereas P80 B20 -HPO film is obtained on hydrophobic substrate "without plasma treatment". Their "upper-dense and lower-porous" structural feature ensured the excellent combination of fast stimuli-response speed endowed by the porous structure and good mechanical strength enhanced by the upper dense surface. Both films are bidirectional water/acetone vapor-responsive materials, but their bending directions responding to the stimuli factors are completely opposite. This strategy showed great potential in the development of smart stimuli-responsive materials.


Asunto(s)
Vapor , Compuestos de Sulfhidrilo , Química Clic , Interacciones Hidrofóbicas e Hidrofílicas , Polimerizacion
10.
Angew Chem Int Ed Engl ; 59(28): 11613-11619, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32237265

RESUMEN

An immortal N-(diphenylphosphanyl)-1,3-diisopropyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-imine/diisobutyl (2,6-di-tert-butyl-4-methylphenoxy) aluminum (P(NIi Pr)Ph2 /(BHT)Ali Bu2 )-based frustrated Lewis pair (FLP) polymerization strategy is presented for rapid and scalable synthesis of the sequence-controlled multiblock copolymers at room temperature. Without addition of extra initiator or catalyst and complex synthetic procedure, this method enabled a tripentacontablock copolymer (n=53, k=4, dpn =50) to be achieved with the highest reported block number (n=53) and molecular weight (Mn =310 kg mol-1 ) within 30 min. More importantly, this FLP polymerization strategy provided access to the multiblock copolymers with tailored properties by precisely adjusting the monomer sequence and block numbers.

11.
J Org Chem ; 83(18): 11019-11027, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30088928

RESUMEN

For the first time, BBr3-assisted nucleophilic substitution was applied to a variety of ß-O-4 and α-O-4 model compounds for the highly effective cleavage of different C-O bonds, including C-Oα-OH, Cß-O/Cα-O and CMe-O bonds (<0.5 h and >99% conversion for most cases). Without any pretreatment, the substitution proceeds at room temperature in the absence of any catalyst, or additive, selectively affording phenols and important organic synthesis reagents, aromatic alkyl bromides, in high to excellent yields (up to 98%). Preliminary studies also highlight the prospect of this method for the effective cleavage of different types of C-O bonds in real lignin. A total 14 wt % yield of aromatic alkyl bromide, 4-(1,2-dibromo-3-hydroxypropyl)benzene-1,2-diol (10), has been obtained from an extracted lignin through this method.

12.
J Org Chem ; 83(3): 1377-1386, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29284261

RESUMEN

Without the addition of any additives and production of any small molecules, C3-borylated indoles and transfer hydrogenated indolines have been simultaneously achieved by a B(C6F5)3-catalyzed disproportionation reaction of a broad range of indoles with catecholborane. This catalyst system exhibits excellent catalytic performance for practical applications, such as easy scale-up under solvent-free conditions and long catalytic lifetime over ten sequential additions of starting materials. A combined mechanistic study, including isolation and characterization of key reaction intermediates, analysis of the disproportionation nature of the reaction, in situ NMR of the reaction, and analysis of detailed experimental data, has led to a possible reaction mechanism which illustrates pathways for the formation of both major products and byproducts. Understanding the reaction mechanism enables us to successfully suppress side reactions by choosing appropriate substrates and adjusting the amount of catecholborane needed. More importantly, with an elevated reaction temperature, we could achieve the convergent disproportionation reaction of indoles, in which indolines were continuously oxidized to indoles for the next disproportionation catalytic cycle. Near quantitative conversions and up to 98% yields of various C3-selective borylated indoles were achieved, without any additives or H2 acceptors.

13.
Molecules ; 23(3)2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543743

RESUMEN

This work reveals the silyl ketene acetal (SKA)/B(C6F5)3 Lewis pair-catalyzed room-temperature group transfer polymerization (GTP) of polar acrylic monomers, including methyl linear methacrylate (MMA), and the biorenewable cyclic monomers γ-methyl-α-methylene-γ-butyrolactone (MMBL) and α-methylene-γ-butyrolactone (MBL) as well. The in situ NMR monitored reaction of SKA with B(C6F5)3 indicated the formation of Frustrated Lewis Pairs (FLPs), although it is sluggish for MMA polymerization, such a FLP system exhibits highly activity and living GTP of MMBL and MBL. Detailed investigations, including the characterization of key reaction intermediates, polymerization kinetics and polymer structures have led to a polymerization mechanism, in which the polymerization is initiated with an intermolecular Michael addition of the ester enolate group of SKA to the vinyl group of B(C6F5)3-activated monomer, while the silyl group is transferred to the carbonyl group of the B(C6F5)3-activated monomer to generate the single-monomer-addition species or the active propagating species; the coordinated B(C6F5)3 is released to the incoming monomer, followed by repeated intermolecular Michael additions in the subsequent propagation cycle. Such neutral SKA analogues are the real active species for the polymerization and are retained in the whole process as confirmed by experimental data and the chain-end analysis by matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS). Moreover, using this method, we have successfully synthesized well-defined PMMBL-b-PMBL, PMMBL-b-PMBL-b-PMMBL and random copolymers with the predicated molecular weights (Mn) and narrow molecular weight distribution (MWD).


Asunto(s)
4-Butirolactona/análogos & derivados , Acetales/química , Metilmetacrilato/química , 4-Butirolactona/química , Catálisis , Cetonas/química , Estructura Molecular , Polimerizacion
14.
Angew Chem Int Ed Engl ; 57(52): 17230-17234, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30380182

RESUMEN

A strong organophosphorus superbase, N-(diphenylphosphanyl)-1,3-diisopropyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-imine (IAP3) was combined with a sterically encumbered but modestly acidic Lewis acid (LA), (4-Me-2,6-t Bu2 -C6 H2 O)Ali Bu2 ((BHT)Ali Bu2 ), to synergistically promote the frustrated Lewis pair (FLP)-catalyzed living polymerization of methyl methacrylate (MMA), achieving ultrahigh molecular weight (UHMW) poly(methyl methacrylate) (PMMA) with Mn up to 1927 kg mol-1 and narrow molecular weight distribution (MWD) at room temperature (RT). This FLP catalyst system exhibits exceptionally long lifetime polymerization performance even in the absence of free MMA, which could reinitiate the desired living polymerization after the resulting system was held at RT for 24 h.

15.
J Am Chem Soc ; 139(21): 7399-7407, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28481517

RESUMEN

A metal-free B(C6F5)3-catalyzed approach is developed for the disproportionation reaction of a series of indoles with various hydrosilanes, without any additives such as base and production of any small molecule such as dihydrogen. This boron catalyst system also exhibits excellent catalytic performance for practical application, such as catalyst loading as low as 0.01 mol % under solvent-free conditions, and a long-life catalytic performance highlighted by a constant catalytic activity being maintained and excellent yields being achieved for the desired products over 10 sequential additions of starting materials. On the basis of characterization of key intermediates through a series of in situ NMR reactions and detailed experimental data, we proposed a reaction mechanism which illustrated pathways for the formation of different products, including both major products and byproducts. Additional control experiments were conducted to support our proposed mechanism. Understanding the mechanism enables us to successfully suppress side reactions by choosing appropriate substrates and hydrosilanes. More importantly, the use of an elevated reaction temperature for continuous oxidation of the resulting indoline to indole makes the convergent disproportionation reaction an ideal atom-economical process. Near-quantitative conversions and up to 99% yields of C3-silylated indoles were achieved for various indoles with trisubstituted silanes, Ph3SiH (2b) or Ph2MeSiH (2d).

16.
Top Curr Chem ; 353: 185-227, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24699900

RESUMEN

The development of sustainable routes to fine chemicals, liquid fuels, and polymeric materials from natural resources has attracted significant attention from academia, industry, the general public, and governments owing to dwindling fossil resources, surging energy demand, global warming concerns, and other environmental problems. Cellulosic material, such as grasses, trees, corn stover, or wheat straw, is the most abundant nonfood renewable biomass resources on earth. Such annually renewable material can potentially meet our future needs with a low carbon footprint if it can be efficiently converted into fuels, value added chemicals, or polymeric materials. This chapter focuses on various renewable monomers derived directly from cellulose or cellulose platforms and corresponding sustainable polymers or copolymers produced therefrom. Recent advances related to the polymerization processes and the properties of novel biomass-derived polymers are also reviewed and discussed.


Asunto(s)
Ácidos Dicarboxílicos/química , Etanol/química , Furaldehído/química , Ácido Láctico/química , Ácidos Levulínicos/química , Sorbitol/química , Biomasa , Celulosa/química , Estructura Molecular , Polimerizacion
17.
J Am Chem Soc ; 135(47): 17925-42, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24245532

RESUMEN

This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (I(t)Bu), 1,3-dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by I(t)Bu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, I(t)Bu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10,000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of M(n) = 70-85 kg/mol, regardless of the [MMBL]/[I(t)Bu] ratio employed. The I(t)Bu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s(-1) and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine formation/dimerization through proton transfer vs polymerization through conjugate addition, and mapped out extensive energy profiles for chain initiation, propagation, and termination steps, thereby satisfactorily explaining the experimental observations.

18.
Chem Asian J ; 18(2): e202201076, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36468413

RESUMEN

The production of cyclic carbonates and (or) polycarbonates from the coupling of carbon dioxide (CO2 ) with epoxides is a practical strategy for CO2 fixation. Chemically recycling of the polycarbonates is also urgently needed for sustainable development of plastics. Here a dinuclear ß-diketiminato (BDI) methyl zinc complex((BDI-ZnMe)2 , 1) is reported to achieve not only selective cyclic carbonates from cycloaddition of CO2 to meso-CHO in the presence of cocatalyst, but also effective depolymerization of PCHC into trans-CHC. The trans-CHC can be further transformed into cis-CHC, thus demonstrating great application potentials of this strategy in CO2 fixation and chemical recycling of plastics.


Asunto(s)
Dióxido de Carbono , Zinc , Catálisis , Plásticos , Carbonatos
19.
Nat Commun ; 14(1): 703, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759604

RESUMEN

Sila-isosteres have attracted increasing attention due to their potential application in a variety of fields and their different properties compared to their carbon-containing analogs. However, the preparation of these silicon-containing compound remains challenging and thus the development of alternative synthetic methodologies is desirable. Here, we employ B(C6F5)3 as catalyst to enable the synthesis of highly functionalized sila-benzoazoles via hydrosilylation and rearrangement cascade reaction of benzoazoles and commercially available silanes. This strategy also exhibits remarkable features such as 100% atom-economy, good functional group tolerance, broad substrate scope, easy scale-up and good catalytic performance, demonstrating its potential application in sila-isostere synthesis.

20.
Nat Chem ; 15(3): 366-376, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36443531

RESUMEN

The existing catalyst/initiator systems and methodologies used for the synthesis of polymers can access only a few cyclic polymers composed entirely of a single monomer type, and the synthesis of such authentic cyclic polar vinyl polymers (acrylics) devoid of any foreign motifs remains a challenge. Here we report that a tethered B-P-B trifunctional, intramolecular frustrated Lewis pair catalyst enables the synthesis of an authentic cyclic acrylic polymer, cyclic poly(γ-methyl-α-methylene-γ-butyrolactone) (c-PMMBL), from the bio-based monomer MMBL. Detailed studies have revealed an initiation and propagation mechanism through pairwise monomer enchainment enabled by the cooperative and synergistic initiator/catalyst sites of the trifunctional catalyst. We propose that macrocyclic intermediates and transition states comprising two catalyst molecules are involved in the catalyst-regulated ring expansion and eventual cyclization, forming authentic c-PMMBL rings and concurrently regenerating the catalyst. The cyclic topology of the c-PMMBL polymers imparts an ~50 °C higher onset decomposition temperature and a much narrower degradation window compared with their linear counterparts of similar molecular weight and dispersity, while maintaining high chemical recyclability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA