Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(11): 1744-1753, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629917

RESUMEN

H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system. The majority of vertebrates use the standard heterodimeric (both H and L chains) structure and do not produce sdAb format Igs. To investigate if other animals are able to support sdAb development and function, transgenic chickens (Gallus gallus) were designed to produce H chain-only Abs by omitting the L chain V region and maintaining only the LC region to serve as a chaperone for Ab secretion from the cell. These birds produced 30-50% normal B cell populations within PBMCs and readily expressed chicken sequence sdAbs. Interestingly, the H chains contained a spontaneous CH1 deletion. Although no isotype switching to IgY or IgA occurred, the IgM repertoire was diverse, and immunization with a variety of protein immunogens rapidly produced high and specific serum titers. mAbs of high affinity were efficiently recovered by single B cell screening. In in vitro functional assays, the sdAbs produced by birds immunized against SARS-CoV-2 were also able to strongly neutralize and prevent viral replication. These data suggest that the truncated L chain design successfully supported sdAb development and expression in chickens.


Asunto(s)
Animales Modificados Genéticamente , Pollos , Cadenas Pesadas de Inmunoglobulina , Anticuerpos de Dominio Único , Animales , Pollos/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/inmunología , Transgenes/genética , Linfocitos B/inmunología , Anticuerpos Antivirales/inmunología , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/inmunología , Humanos
2.
Exp Dermatol ; 33(1): e15007, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284195

RESUMEN

Human amniotic epithelial stem cells (hAESCs) are regarded as potential alternatives to keratinocytes (KCs) used for skin wound healing. Light is an alternative approach for inducing stem cell differentiation. Opsins (OPNs), a family of light-sensitive, G protein-coupled receptors, play a multitude of light-dependent and light-independent functions in extraocular tissues. However, it remains unclear whether the light sensitivity and function of OPNs are involved in light-induced differentiation of hAESCs to KCs. Herein, we determine the role of OPNs in differentiation of hAESCs into KCs through cell and molecular biology approaches in vitro. It is shown that mRNA expression of OPN3 in the amniotic membrane and hAESCs was higher than the other four primary OPNs by RT-qPCR analysis. Changes in OPN3 gene expression had a significant impact on cell proliferation, stemness and differentiation capability of hAESCs. Furthermore, we found a significant upregulation of OPN3, KRT5 and KRT14 with hAESCs treated at 3 × 33 J/cm2 irradiation from blue-light LED. Taken together, these results suggest that OPN3 acts as a positive regulator of differentiation of hAESCs into KCs. This study provides a novel insight into photosensitive OPNs associated with photobiomodulation(PBM)-induced differentiation in stem cells.


Asunto(s)
Queratinocitos , Receptores Acoplados a Proteínas G , Opsinas de Bastones , Humanos , Diferenciación Celular , Proliferación Celular , Queratinocitos/metabolismo , Receptores Acoplados a Proteínas G/genética , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Células Madre/metabolismo
3.
Dis Aquat Organ ; 158: 101-114, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661141

RESUMEN

Snakehead vesiculovirus (SHVV) is a negative-sense single-stranded RNA virus that infects snakehead fish. This virus leads to illness and mortality, causing significant economic losses in the snakehead aquaculture industry. The replication and spread of SHVV in cells, which requires glutamine as a nitrogen source, is accompanied by alterations in intracellular metabolites. However, the metabolic mechanisms underlying the inhibition of viral replication by glutamine deficiency are poorly understood. This study utilized liquid chromatography-mass spectrometry to measure the differential metabolites between the channel catfish Parasilurus asotus ovary cell line infected with SHVV under glutamine-containing and glutamine-deprived conditions. Results showed that the absence of glutamine regulated 4 distinct metabolic pathways and influenced 9 differential metabolites. The differential metabolites PS(16:0/16:0), 5,10-methylene-THF, and PS(18:0/18:1(9Z)) were involved in amino acid metabolism. In the nuclear metabolism functional pathway, differential metabolites of guanosine were observed. In the carbohydrate metabolism pathway, differential metabolites of UDP-d-galacturonate were detected. In the signal transduction pathway, differential metabolites of SM(d18:1/20:0), SM(d18:1/22:1(13Z)), SM(d18:1/24:1(15 Z)), and sphinganine were found. Among them, PS(18:0/18:1(9Z)), PS(16:0/16:0), and UDP-d-galacturonate were involved in the synthesis of phosphatidylserine and glycoprotein. The compound 5,10-methylene-THF provided raw materials for virus replication, and guanosine and sphingosine are related to virus virulence. The differential metabolites may collectively participate in the replication, packaging, and proliferation of SHVV under glutamine deficiency. This study provides new insights and potential metabolic targets for combating SHVV infection in aquaculture through metabolomics approaches.


Asunto(s)
Glutamina , Vesiculovirus , Replicación Viral , Animales , Glutamina/metabolismo , Vesiculovirus/fisiología , Enfermedades de los Peces/virología , Metabolómica , Línea Celular , Ictaluridae
4.
BMC Genomics ; 24(1): 291, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37254055

RESUMEN

BACKGROUND: Hong Kong catfish (Clarias fuscus) is an ecologically and economically important species that is widely distributed in freshwater regions of southern China. Hong Kong catfish has significant sexual growth dimorphism. The genome assembly of the Hong Kong catfish would facilitate study of the sex determination and evolution mechanism of the species. RESULTS: The first high-quality chromosome-level genome of the Hong Kong catfish was constructed. The total genome was 933.4 Mb, with 416 contigs and a contig N50 length of 8.52 Mb. Using high-throughput chromosome conformation capture (Hi-C) data, the genome assembly was divided into 28 chromosomes with a scaffold N50 length of 36.68 Mb. A total of 23,345 protein-coding genes were predicted in the genome, and 94.28% of the genes were functionally annotated in public databases. Phylogenetic analysis indicated that C. fuscus and Clarias magur diverged approximately 63.7 million years ago. The comparative genome results showed that a total of 60 unique, 353 expanded and 851 contracted gene families were identified in Hong Kong catfish. A sex-linked quantitative trait locus identified in a previous study was located in a sex-determining region of 30.26 Mb (0.02 to 30.28 Mb) on chromosome 13 (Chr13), the predicted Y chromosome. This QTL region contained 785 genes, of which 18 were identified as sex-related genes. CONCLUSIONS: This study is the first to report the chromosome-level genome assembly of Hong Kong catfish. The study provides an excellent genetic resource that will facilitate future studies of sex determination mechanisms and evolution in fish.


Asunto(s)
Bagres , Cromosomas , Animales , Filogenia , Hong Kong , Genoma , Bagres/genética , Cromosoma Y
5.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37293851

RESUMEN

Mycotoxins are secondary metabolites produced by fungi during their growth. They not only seriously affect the yield of food crops but also pose a threat to human and animal health. Physical and chemical methods have been widely used to reduce the production and accumulation of mycotoxins in the field or after harvest, but these methods have difficulty in completely removing mycotoxins while keeping the nutrients at the same time. Biodegradation methods using isolated enzymes have shown superiority and potential for modest reaction conditions, high degradation efficiency and degradation products with low toxicity. Therefore, the occurrence, chemical structures, and toxicology of six prevalent mycotoxins (deoxynivalenol, zearalenone, aflatoxin, patulin, fumonisin, and ochratoxin) were described in this manuscript. The identification and application of mycotoxin-degrading enzymes were thoroughly reviewed. It is believed that in the near future, mycotoxin-degrading enzymes are expected to be commercially developed and used in the feed and food industries.

6.
Arch Insect Biochem Physiol ; 112(1): e21914, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35570199

RESUMEN

Loxostege turbidalis, Loxostege aeruginalis, Pyrausta despicata, and Crambus perlellus belong to Crambidae, Pyraloidea. Their mitochondrial genomes (mitogenomes) were successfully sequenced. The mitogenomes of L. turbidalis, L. aeruginalis, P. despicata, and C. perlellus are 15 240 bp, 15 339 bp, 15 389 bp, and 15 440 bp. The four mitogenomes all have a typical insect mitochondrial gene order, including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and one A + T rich region (control region). The PCGs are initiated by the typical ATN codons, except CGA for the cox1 gene. Most PCGs terminate with common codon TAA or TAG, the incomplete codon T is found as the stop codon for cox2, nad4, and nad5. Most tRNA genes exhibit typical cloverleaf structure, except trnS1 (AGN) lacking the dihydrouridine (DHU) arm. The secondary structure of rRNA of four mitogenomes were predicted. Poly-T structure and micro-satellite regions are conserved in control regions. The phylogenetic analyses based on 13 PCGs showed the relationships of subfamilies in Pyraloidea. Pyralidae, and Crambidae are monophyletic, respectively. Pyralidae comprises four subfamilies, which form the following topology with high support values: (Galleriinae + ((Pyralinae + Epipaschiinae)+ Phycitinae)). Crambidae includes seven subfamilies and is divided into two lineages. Pyraustinae and Spilomelinae are sister groups of each other, and form the "PS clade." Other five subfamilies (Crambinae, Acentropinae, Scopariinae, Schoenobiinae, and Glaphyriinae) form the "non-PS clade" in the Bayesian inference tree. However, Schoenobiinae is not grouped with the other four subfamilies and located at the base of Crambidae in two maximum likelihood trees.


Asunto(s)
Genoma Mitocondrial , Lepidópteros , Mariposas Nocturnas , Animales , Lepidópteros/genética , Filogenia , Teorema de Bayes , Mariposas Nocturnas/genética , ARN de Transferencia/genética , Codón
7.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38003417

RESUMEN

Oocystis borgei, a microalgae species employed for regulating the quality of aquaculture water, demonstrates the capacity to adsorb noxious substances, curtail the growth of detrimental bacteria, and outcompete blooming cyanobacteria. It can be concentrated by natural sedimentation and stored at room temperature, making it costless and simple to transport and use. To study the mechanism of adaptation to room temperature preservation, O. borgei was concentrated (1.19 × 107-1.21 × 107 cell/mL) and stored for 50 days at low (5 °C, LT), normal (25 °C, NT), and high (35 °C, HT) temperatures, respectively. Polysaccharide content, lipid content, cell survival, and resuscitation were evaluated. RNA-Seq was also used to examine how concentrated O. borgei responded to temperature. During storage, there was an increase in polysaccharide content and a decrease in lipid content, with both being significantly upregulated in the LT and HT groups. Survival and cell density were highest in the NT group. The RNA-Seq analysis revealed extensive differences in transcript levels. ATP synthesis was inhibited in the LT group due to the reduced expression of PsaD, PsaE, PsaF, PsaK, and PsaL. Under HT, the formation of reactive oxygen species (ROS) was facilitated by low levels of redox-related genes (nirA) and high levels of oxidative genes (gdhA, glna, and glts). The findings suggest that storing concentrated O. borgei at room temperature is optimal for microalgae preservation, enhancing theoretical research in this field. Our study provides further theoretical and practical support for the development of O. borgei as a live ecological preparation for aquaculture microalgae ecology management.


Asunto(s)
Acuicultura , Perfilación de la Expresión Génica , Temperatura , Polisacáridos , Lípidos
8.
J Biol Chem ; 296: 100508, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33675750

RESUMEN

The aggregation of amyloidogenic polypeptides is strongly linked to several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Conformational antibodies that selectively recognize protein aggregates are leading therapeutic agents for selectively neutralizing toxic aggregates, diagnostic and imaging agents for detecting disease, and biomedical reagents for elucidating disease mechanisms. Despite their importance, it is challenging to generate high-quality conformational antibodies in a systematic and site-specific manner due to the properties of protein aggregates (hydrophobic, multivalent, and heterogeneous) and limitations of immunization (uncontrolled antigen presentation and immunodominant epitopes). Toward addressing these challenges, we have developed a systematic directed evolution procedure for affinity maturing antibodies against Alzheimer's Aß fibrils and selecting variants with strict conformational and sequence specificity. We first designed a library based on a lead conformational antibody by sampling combinations of amino acids in the antigen-binding site predicted to mediate high antibody specificity. Next, we displayed this library on the surface of yeast, sorted it against Aß42 aggregates, and identified promising clones using deep sequencing. The resulting antibodies displayed similar or higher affinities than clinical-stage Aß antibodies (aducanumab and crenezumab). Moreover, the affinity-matured antibodies retained high conformational specificity for Aß aggregates, as observed for aducanumab and unlike crenezumab. Notably, the affinity-maturated antibodies displayed extremely low levels of nonspecific interactions, as observed for crenezumab and unlike aducanumab. We expect that our systematic methods for generating antibodies with unique combinations of desirable properties will improve the generation of high-quality conformational antibodies specific for diverse types of aggregated conformers.


Asunto(s)
Amiloide/metabolismo , Anticuerpos Monoclonales/inmunología , Encéfalo/patología , Amiloide/antagonistas & inhibidores , Amiloide/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Sitios de Unión de Anticuerpos , Encéfalo/inmunología , Estudios de Casos y Controles , Humanos , Ratones , Modelos Moleculares , Conformación Proteica
9.
Crit Rev Eukaryot Gene Expr ; 32(5): 33-45, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35993943

RESUMEN

Recently, dysregulation of long noncoding RNAs (lncRNAs) has been reported to be involved in the pathogenesis of preeclampsia (PE). Here, the role and molecular mechanisms of lncRNA GATA3 antisense RNA 1, GATA3-AS1 in PE were explored. The expression of GATA3-AS1, miR-488-3p and Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) in placental tissues from patients with PE was measured by reverse transcription quantitative PCR (RT-qPCR). Proliferation, migration, invasion, and apoptosis of trophoblast cells were examined by 5-ethynyl-2'-deoxyuridine (EdU), wound healing, Transwell, and flow cytometry analyses. The subcellular localization of GATA3-AS1 in trophoblast cells was determined by fluorescent hybridization (FISH) assay. The interactions among GATA3-AS1, miR-488-3p and ROCK1 were identified by luciferase reporter and RNA pulldown assays. Our results showed that GATA3-AS1 and ROCK1 were overexpressed while miR-488-3p was downregulated in placental samples with PE. Functionally, GATA3-AS1 overexpression promoted trophoblast cell apoptosis and inhibited cell proliferation, migration, and invasion. Mechanically, GATA3-AS1 acted as a molecular sponge of miR-488-3p and miR-488-3p targeted ROCK1 in trophoblast cells. In rescue assays, ROCK1 overexpression or miR-488-3p downregulation reversed the effects of GATA3-AS1 silencing on trophoblast cell phenotypes. GATA3-AS1 is overexpressed in PE and promotes PE progression by the miR-488-3p/ROCK1 axis.


Asunto(s)
MicroARNs , Preeclampsia , ARN Largo no Codificante , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Placenta/metabolismo , Preeclampsia/genética , Preeclampsia/patología , Embarazo , ARN Largo no Codificante/genética , Trofoblastos/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
10.
Crit Rev Eukaryot Gene Expr ; 32(6): 83-95, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35997120

RESUMEN

Gestational diabetes mellitus (GDM) is a worldwide public health problem. MicroRNAs (miRNAs) have been reported to be associated with GDM progression. We intended to figure out the function of miR-342-3p in the insulin resistance (IR) and liver gluconeogenesis in GDM. GDM mouse models were established by intraperitoneal injection of streptozocin. The expression of miR-342-3p and regulatory factor X3 (Rfx3) in placenta and pancreatic tissues of GDM mice were evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). GDM mice were treated with lentivirus-mediated antagomir-miR-342-3p for miR-342-3p downregulation. Enzyme-linked immunosorbent assay, hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and periodic acid-Schiff staining were conducted to detect the influence of miR-342-3p knockdown on the levels of blood glucose, insulin, biochemical indices as well as the apoptosis and pathological changes in placenta or pancreatic tissues of GDM mice. The binding between Rfx3 and miR-342-3p was validated by dual luciferase reporter assays. miR-342-3p was upregulated and Rfx3 was downregulated in placenta and pancreatic tissues of GDM mice. Moreover, miR-342-3p bound with Rfx3 3'-UTR and therefore downregulated the expression of Rfx3. miR-342-3p expression was negatively correlated to Rfx3 expression in placenta tissues of GDM mice. In addition, miR-342-3p depletion decreased the levels of blood glucose, insulin, biochemical indices as well as restrained the apoptosis and pathological changes in GDM mouse placenta and pancreatic tissues. Furthermore, Rfx3 silencing countervailed the alleviative influence of miR-342-3p downregulation on IR and liver gluconeogenesis in GDM mice. Collectively, downregulation of miRNA-342-3p inhibits IR and liver gluconeogenesis in GDM by upregulating Rfx3, which may provide novel insight for GDM treatment.


Asunto(s)
Diabetes Gestacional , Resistencia a la Insulina , MicroARNs , Factores de Transcripción del Factor Regulador X , Animales , Glucemia/metabolismo , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Regulación hacia Abajo , Femenino , Gluconeogénesis/genética , Insulina/metabolismo , Resistencia a la Insulina/genética , Hígado/patología , Ratones , MicroARNs/genética , Embarazo , Factores de Transcripción del Factor Regulador X/genética
11.
J Neuroinflammation ; 19(1): 117, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610704

RESUMEN

BACKGROUND: Agomelatine has been shown to be effective in the treatment of depression, but the molecular mechanisms underlying its antidepressant effects have yet to be elucidated. Identification of these molecular mechanisms would not only offer new insights into the basis for depression but also provide the foundation for the development of novel treatments for this disorder. METHODS: Intraperitoneal injection of LPS was used to induce depression-like behaviors in rats. The interactions of the 5-HT2C reporter and Gαi-2 were verified by immunoprecipitation or immunofluorescence assay. Inflammatory related proteins, autophagy related proteins and apoptosis markers were verified by immunoblotting or immunofluorescence assay. Finally, electron microscopy analysis was used to observe the synapse and ultrastructural pathology. RESULTS: Here, we found that the capacity for agomelatine to ameliorate depression and anxiety in a lipopolysaccharide (LPS)-induced rat model of depression was associated with an alleviation of neuroinflammation, abnormal autophagy and neuronal apoptosis as well as the promotion of neurogenesis in the hippocampal dentate gyrus (DG) region of these rats. We also found that the 5-HT2C receptor is coupled with G alphai (2) (Gαi-2) protein within hippocampal neurons and, agomelatine, acting as a 5-HT2C receptor antagonist, can up-regulate activity of the Gαi-2-cAMP-PKA pathway. Such events then suppress activation of the apoptosis signal-regulating kinase 1 (ASK1) pathway, a member of the mitogen-activated protein kinase (MAPK) family involved in pathological processes of many diseases. CONCLUSION: Taken together, these results suggest that agomelatine plays a neuroprotective role in regulating neuroinflammation, autophagy disorder and apoptosis in this LPS-induced rat model of depression, effects which are associated with the display of antidepressant behaviors. These findings provide evidence for some of the potential mechanisms for the antidepressant effects of agomelatine.


Asunto(s)
Acetamidas , Naftalenos , Receptor de Serotonina 5-HT2C , Acetamidas/farmacología , Animales , Antidepresivos/farmacología , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Depresión/patología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Lipopolisacáridos/farmacología , MAP Quinasa Quinasa Quinasa 5/metabolismo , Naftalenos/farmacología , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas , Receptor de Serotonina 5-HT2C/metabolismo , Transducción de Señal
12.
Exp Dermatol ; 31(12): 1932-1938, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36017595

RESUMEN

Opsin 3 (OPN3), a member of the light-sensitive, retinal-dependent opsin family, is widely expressed in a variety of human tissues and plays a multitude of light-dependent and light-independent roles. We recently identified five missense variants of OPN3, including p. I51T, p. V134A, p. V183I, p. M256I and p. C331Y, in human melanocytic tumours. However, it remains unclear how these OPN3 variants affect OPN3 protein structure and function. Herein, we conducted structural and functional studies of these variant proteins in OPN3 by molecular docking and molecular dynamics simulations. Moreover, we performed in vitro fluorescence calcium imaging to assess the functional properties of five single-nucleotide variant (SNV) proteins using a site-directed mutagenesis method. Notably, the p. I51T variant was not able to effectively dock with 11-cis-retinal. Additionally, in vitro, the p. I51T SNVs failed to induce any detectable changes in intracellular Ca2+ concentration at room temperature. Taken together, these results reveal that five SNVs in the OPN3 gene have deleterious effects on protein structure and function, suggesting that these mutations, especially the p. I51T variant, significantly disrupt the canonical function of the OPN3 protein. Our findings provide new insight into the role of OPN3 variants in the loss of protein function.


Asunto(s)
Melanocitos , Opsinas de Bastones , Humanos , Simulación del Acoplamiento Molecular , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Melanocitos/metabolismo , Opsinas/genética , Mutación Missense
13.
Mol Pharm ; 19(3): 775-787, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35108018

RESUMEN

The widespread interest in antibody therapeutics has led to much focus on identifying antibody candidates with favorable developability properties. In particular, there is broad interest in identifying antibody candidates with highly repulsive self-interactions in standard formulations (e.g., low ionic strength buffers at pH 5-6) for high solubility and low viscosity. Likewise, there is also broad interest in identifying antibody candidates with low levels of non-specific interactions in physiological solution conditions (PBS, pH 7.4) to promote favorable pharmacokinetic properties. To what extent antibodies that possess both highly repulsive self-interactions in standard formulations and weak non-specific interactions in physiological solution conditions can be systematically identified remains unclear and is a potential impediment to successful therapeutic drug development. Here, we evaluate these two properties for 42 IgG1 variants based on the variable fragments (Fvs) from four clinical-stage antibodies and complementarity-determining regions from 10 clinical-stage antibodies. Interestingly, we find that antibodies with the strongest repulsive self-interactions in a standard formulation (pH 6 and 10 mM histidine) display the strongest non-specific interactions in physiological solution conditions. Conversely, antibodies with the weakest non-specific interactions under physiological conditions display the least repulsive self-interactions in standard formulations. This behavior can be largely explained by the antibody isoelectric point, as highly basic antibodies that are highly positively charged under standard formulation conditions (pH 5-6) promote repulsive self-interactions that mediate high colloidal stability but also mediate strong non-specific interactions with negatively charged biomolecules at physiological pH and vice versa for antibodies with negatively charged Fv regions. Therefore, IgG1s with weakly basic isoelectric points between 8 and 8.5 and Fv isoelectric points between 7.5 and 9 typically display the best combinations of strong repulsive self-interactions and weak non-specific interactions. We expect that these findings will improve the identification and engineering of antibody candidates with drug-like biophysical properties.


Asunto(s)
Anticuerpos Monoclonales , Regiones Determinantes de Complementariedad , Anticuerpos Monoclonales/química , Regiones Determinantes de Complementariedad/química , Inmunoglobulina G/química , Punto Isoeléctrico
14.
Addict Biol ; 27(1): e13103, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34647651

RESUMEN

Long-term opioid abuse causes a variety of long-lasting cognitive impairments such as attention, impulsivity and working memory. These cognitive impairments undermine behavioural treatment for drug abuse and lead to poor treatment retention and outcomes. Modafinil is a wake-promoting drug that shows potential in improving attention and memory in humans and animals. However, modafinil's effect on opioid-induced cognitive impairments remains unclear, and the underlying mechanism is poorly understood. This study showed that repeated morphine administration significantly impairs attention, increases impulsivity and reduces motivation to natural rewards in mice. Systemic modafinil treatment at low dose efficiently ameliorates morphine-induced attention dysfunction and improves motivation and working memory in mice. High dose of modafinil has adverse effects on impulsive action and attention. Local infusion of D1R antagonist SCH-23390 reverses the morphine-induced synaptic abnormalities and activation of the D1R-ERK-CREB pathway in medial prefrontal cortex (mPFC). This study demonstrated a protective effect of modafinil in mPFC neurons and offered a therapeutic potential for cognitive deficits in opioid abuse.


Asunto(s)
Atención/efectos de los fármacos , Trastornos del Conocimiento/fisiopatología , Modafinilo/farmacología , Morfina/farmacología , Corteza Prefrontal/efectos de los fármacos , Animales , Trastornos del Conocimiento/inducido químicamente , Relación Dosis-Respuesta a Droga , Conducta Impulsiva/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Modafinilo/administración & dosificación , Modafinilo/efectos adversos , Motivación/efectos de los fármacos
15.
Curr Microbiol ; 79(2): 58, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982237

RESUMEN

The study aimed to evaluate the safety of copper ion sterilization based on copper ion residues in zebrafish (Brachydanio rerio), as well as bacterial community structure and diversity in recirculating aquaculture systems (RASs). The copper ion content was determined using national food safety standard GB 5009.13-2017. Bacterial community structures and alpha and beta diversity indexes were examined using the 16S rRNA gene sequences produced by Illumina HiSeq sequencing. The results revealed no significant copper ion enrichment in B. rerio when the copper ion concentration was 0.15 mg/L. The relative abundances of Erythrobacter, nitrite bacteria, and Flavanobacteria were clearly higher in the treatment group than in the control and differences in bacterial species richness and diversity were obvious. In addition, there was no sharp decrease in the microflora at the outflow of the copper ion generator. In conjunction with the changes in ammonia nitrogen, nitrate, and nitrite concentrations during the experiment, the results indicated that there were no significant effects on the purification efficacy of the biological filter, but the abundances of beneficial bacteria increased significantly. This is of great relevance in order to understand the response of bacterial communities affected by changing environmental conditions, such as copper ion sterilization.


Asunto(s)
Cobre , Pez Cebra , Animales , Acuicultura , Bacterias/genética , Cobre/farmacología , Agua Dulce , ARN Ribosómico 16S/genética , Esterilización
16.
Biotechnol Bioeng ; 118(2): 797-808, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33095442

RESUMEN

Biologics such as peptides and proteins possess a number of attractive attributes that make them particularly valuable as therapeutics, including their high activity, high specificity, and low toxicity. However, one of the key challenges associated with this class of drugs is their propensity to aggregate. Given the safety and immunogenicity concerns related to polypeptide aggregates, it is particularly important to sensitively detect aggregates in therapeutic drug formulations as part of the quality control process. Here, we report the development of conformation-specific antibodies that recognize polypeptide aggregates composed of a GLP-1 receptor agonist (liraglutide) and their integration into a sensitive immunoassay for detecting liraglutide amyloid fibrils. We sorted single-chain antibody libraries against liraglutide fibrils using yeast surface display and magnetic-activated cell sorting, and identified several antibodies with high conformational specificity. Interestingly, these antibodies cross-react with amyloid fibrils formed by several other polypeptides, revealing that they recognize molecular features common to different types of fibrils. Moreover, we find that our immunoassay using these antibodies is >50-fold more sensitive than the conventional method for detecting liraglutide aggregation (Thioflavin T fluorescence). We expect that our systematic approach for generating a sensitive, aggregate-specific immunoassay can be readily extended to other biologics to improve the quality and safety of formulated drug products.


Asunto(s)
Amiloide/química , Evolución Molecular Dirigida , Composición de Medicamentos , Péptido 1 Similar al Glucagón/química , Liraglutida/química , Agregado de Proteínas , Anticuerpos de Cadena Única/química , Humanos , Anticuerpos de Cadena Única/genética
17.
Curr Microbiol ; 78(4): 1409-1417, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33649996

RESUMEN

We analyzed the complete genome of the bacteria Brevibacillus laterosporus Bl-zj. Its genome has a total length of 5,202,546 bp with 4594 annotated genes. The functional groups included transporters, pathogen-host interaction factors, antibiotic resistance genes, virulence factor, and secreted proteins were predicted, and carbon and nitrogen metabolism and transporters were mapped. A total of 34 genes possibly involved in algae-lysing processes were further screened, including 8 virulence factors, 18 secreted proteases, and 8 antibiotic-resistant genes, which could be playing important roles in host identification, invasion, and the destruction of algal cells. This study will provide a theoretical framework for the algicidal mechanism of algae-lysing bacteria and possible application to algal control.


Asunto(s)
Bacillus , Brevibacillus , Brevibacillus/genética , Análisis de Secuencia , Factores de Virulencia
18.
Mar Drugs ; 19(6)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199219

RESUMEN

Natural astaxanthin helps reduce the negative effects caused by oxidative stress and other related factors, thereby minimizing oxidative damage. Therefore, it has considerable potential and broad application prospects in human health and animal nutrition. Haematococcus pluvialis is considered to be the most promising cell factory for the production of natural astaxanthin. Previous studies have confirmed that nonmotile cells of H. pluvialis are more tolerant to high intensity of light than motile cells. Cultivating nonmotile cells as the dominant cell type in the red stage can significantly increase the overall astaxanthin productivity. However, we know very little about how to induce nonmotile cell formation. In this work, we first investigated the effect of phosphorus deficiency on the formation of nonmotile cells of H. pluvialis, and then investigated the effect of NaCl on the formation of nonmotile cells under the conditions of phosphorus deficiency. The results showed that, after three days of treatment with 0.1% NaCl under phosphorus deficiency, more than 80% of motile cells had been transformed into nonmotile cells. The work provides the most efficient method for the cultivation of H. pluvialis nonmotile cells so far, and it significantly improves the production of H. pluvialis astaxanthin.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Chlorophyceae/efectos de los fármacos , Chlorophyceae/crecimiento & desarrollo , Estadios del Ciclo de Vida/fisiología , Fósforo/deficiencia , Cloruro de Sodio/farmacología , Productos Biológicos/metabolismo , Estrés Oxidativo/fisiología , Cloruro de Sodio/metabolismo , Xantófilas/metabolismo
19.
Zygote ; 29(2): 108-117, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33161910

RESUMEN

Preeclampsia (PE), a pregnancy-specific disease, has become one of the leading causes of maternal and neonatal morbidity and mortality. Pathogenesis of PE has still not been fully addressed and there is a great need to develop early diagnosis markers and effective therapy. This study aimed to determine if lncRNA SNHG14 has a protective effect on placental trophoblast and prevents PE. SNHG14 levels in the peripheral blood from patients with PE or from women with healthy pregnancies were detected using RT-qPCR. The relationship between SNHG14 and miR-330-5p was determined using a dual-luciferase reporter assay. In addition, cell proliferation and cell cycle were evaluated by performing CCK8 assays and flow-cytometric analysis, respectively. Wound-healing and transwell assays were performed to assess cell migration and invasion ability. lncRNA SNHG14 was downregulated in PE patients; it was involved in trophoblast proliferation and regulated cell proliferation during G1/S transition. In addition, lncRNA SNHG14 promoted migration, invasion and epithelial-mesenchymal transition (EMT) in HTR-8/SVneo cells. Luciferase reporter assay indicated that lncRNA SNHG14 served as a molecular sponge for miR-330-5p and negatively regulated miR-330-5p expression in PE. Furthermore, the effects of silenced SNHG14 on trophoblast proliferation, migration, invasion and EMT were reversed by addition of miR-330-5p inhibitor, suggesting that in PE lncRNA SNHG14 functions by competitively binding to miR-330-5p. Taken together, the current study demonstrated that in PE lncRNA SNHG14 is a vital regulator by binding to miR-330-5p. SNHG14 might serve as a therapeutic application in PE progression.


Asunto(s)
MicroARNs , Preeclampsia , ARN Largo no Codificante , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Humanos , Recién Nacido , Placenta , Embarazo , Trofoblastos
20.
Mol Pharm ; 17(7): 2555-2569, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32453957

RESUMEN

The ability of antibodies to recognize their target antigens with high specificity is fundamental to their natural function. Nevertheless, therapeutic antibodies display variable and difficult-to-predict levels of nonspecific and self-interactions that can lead to various drug development challenges, including antibody aggregation, abnormally high viscosity, and rapid antibody clearance. Here we report a method for predicting the overall specificity of antibodies in terms of their relative risk for displaying high levels of nonspecific or self-interactions at physiological conditions. We find that individual and combined sets of chemical rules that limit the maximum and minimum numbers of certain solvent-exposed amino acids in antibody variable regions are strong predictors of specificity for large panels of preclinical and clinical-stage antibodies. We also demonstrate how the chemical rules can be used to identify sites that mediate nonspecific interactions in suboptimal antibodies and guide the design of targeted sublibraries that yield variants with high antibody specificity. These findings can be readily used to improve the selection and engineering of antibodies with drug-like specificity.


Asunto(s)
Anticuerpos Monoclonales/química , Desarrollo de Medicamentos/métodos , Región Variable de Inmunoglobulina/química , Anticuerpos Monoclonales/inmunología , Bioingeniería/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Químicos , Sensibilidad y Especificidad , Solubilidad , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA