Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 32(11): 20153-20165, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859132

RESUMEN

We propose and demonstrate a high-speed directly modulated laser based on a hybrid deformed-square-FP coupled cavity (DFC), aiming for a compact-size low-cost light source in next-generation optical communication systems. The deformed square microcavity is directly connected to the FP cavity and utilized as a wavelength-sensitive reflector with a comb-like and narrow-peak reflection spectrum for selecting the lasing mode, which can greatly improve the single-mode yield of the laser and the quality (Q) factor of the coupled mode. By optimizing the device design and operating condition, the modulation bandwidth of the DFC laser can be enhanced due to the intracavity-mode photon-photon resonance effect. Our experimental results show an enhancement of 3-dB modulation bandwidth from 19.3 GHz to 30 GHz and a clear eye diagram at a modulation rate of 25 Gbps.

2.
Mol Psychiatry ; 28(4): 1557-1570, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36750736

RESUMEN

Dysregulated neurite outgrowth and synapse formation underlie many psychiatric disorders, which are also manifested by wolfram syndrome (WS). Whether and how the causative gene WFS1 deficiency affects synapse formation remain elusive. By mirroring human brain development with cerebral organoids, WFS1-deficient cerebral organoids not only recapitulate the neuronal loss in WS patients, but also exhibit significantly impaired synapse formation and function associated with reduced astrocytes. WFS1 deficiency in neurons autonomously delays neuronal differentiation with altered expressions of genes associated with psychiatric disorders, and impairs neurite outgrowth and synapse formation with elevated cytosolic calcium. Intriguingly, WFS1 deficiency in astrocytes decreases the expression of glutamate transporter EAAT2 by NF-κB activation and induces excessive glutamate. When co-cultured with wildtype neurons, WFS1-deficient astrocytes lead to impaired neurite outgrowth and increased cytosolic calcium in neurons. Importantly, disrupted synapse formation and function in WFS1-deficient cerebral organoids and impaired neurite outgrowth affected by WFS1-deficient astrocytes are efficiently reversed with Riluzole treatment, by restoring EAAT2 expression in astrocytes. Furthermore, Riluzole rescues the depressive-like behavior in the forced swimming test and the impaired recognition and spatial memory in the novel object test and water maze test in Wfs1 conditional knockout mice. Altogether, our study provides novel insights into how WFS1 deficiency affects synapse formation and function, and offers a strategy to treat this disease.


Asunto(s)
Células Madre Embrionarias Humanas , Síndrome de Wolfram , Animales , Ratones , Humanos , Síndrome de Wolfram/tratamiento farmacológico , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Riluzol/farmacología , Riluzol/metabolismo , Calcio/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Neuronas/metabolismo , Ratones Noqueados , Sinapsis/metabolismo
3.
Anticancer Drugs ; 35(6): 483-491, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38502867

RESUMEN

This study aims to investigate the role and mechanism of ubiquitin-specific protease 3 (USP3) in cisplatin (DDP) in non-small cell lung cancer (NSCLC). USP3 expression in NSCLC cells was detected using reverse transcription quantitative PCR and Western blot. DDP-resistant cells were constructed and cell counting kit-8 assay determined the IC 50 of cells to DDP. USP3 expression was silenced in DDP-resistant cells, followed by detection of cell proliferation by clone formation assay, iron ion contents, ROS, MDA, and GSH levels by kits, GPX4 and ACSL4 protein expressions by Western blot. The binding between USP3 and ACOT7 was analyzed using Co-IP, and the ubiquitination level of ACOT7 was measured. USP3 and ACOT7 were highly expressed in NSCLC cells and further increased in drug-resistant cells. USP3 silencing reduced the IC 50 of cells to DDP and diminished the number of cell clones. Moreover, USP3 silencing suppressed GSH and GPX4 levels, upregulated iron ion contents, ROS, MDA, and ACSL4 levels, and facilitated ferroptosis. Mechanistically, USP3 upregulated ACOT7 protein expression through deubiquitination. ACOT7 overexpression alleviated the promoting effect of USP7 silencing on ferroptosis in NSCLC cells and enhanced DDP resistance. To conclude, USP3 upregulated ACOT7 protein expression through deubiquitination, thereby repressing ferroptosis in NSCLC cells and enhancing DDP resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Coenzima A Ligasas , Resistencia a Antineoplásicos , Ferroptosis , Neoplasias Pulmonares , Humanos , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Ferroptosis/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
4.
Opt Express ; 31(8): 12200-12211, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157384

RESUMEN

A narrow linewidth optical frequency comb (OFC) based on a directly modulated microcavity laser with external optical feedback is investigated numerically and demonstrated experimentally. Based on the numerical simulations with rate equations, the evolution of the optical and electrical spectra is presented for the direct-modulated microcavity laser with increased feedback strength, and the linewidth property is improved at suitable feedback conditions. The simulation results also show good robustness for the generated OFC in terms of feedback strength and phase. Moreover, the OFC generation experiment is performed by combining with the dual-loop feedback structure to suppress the side mode, and an OFC with a side-mode suppression ratio of 31 dB is realized. Thanks to the high electro-optical response of the microcavity laser, a 15-tone OFC with a frequency interval of 10 GHz is obtained. Finally, the linewidth of each comb tooth is measured to be around 7 kHz under the feedback power of 47 µW, which indicates an enormous compression of approximately 2000 times compared with the free-running continuous-wave microcavity laser.

5.
Opt Lett ; 48(19): 4953-4956, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773358

RESUMEN

Self-pulsing and dual-mode lasing in a square microcavity semiconductor laser are studied experimentally. Self-sustained pulses originating from undamped relaxation oscillation induced by a two-mode interaction are obtained, as the injection current is slightly above the laser threshold. A repetition frequency of 4.4 GHz and a pulse width of 30-40 ps are obtained at a current of 8 mA. The laser switches to continuous-wave operation when the injection current is higher than a certain value, and dual-mode lasing with 30.7 GHz at 16 mA and 10.7 GHz at 27 mA are observed in the lasing spectra. Furthermore, the relative intensity noise spectra are presented to reveal the relationship between the lasing states and the dynamics induced by relaxation oscillation and mode beating.

6.
Nucleic Acids Res ; 49(7): 4171-4185, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33751124

RESUMEN

CRISPR-mediated gene activation (CRISPRa) is a promising therapeutic gene editing strategy without inducing DNA double-strand breaks (DSBs). However, in vivo implementation of these CRISPRa systems remains a challenge. Here, we report a compact and robust miniCas9 activator (termed miniCAFE) for in vivo activation of endogenous target genes. The system relies on recruitment of an engineered minimal nuclease-null Cas9 from Campylobacter jejuni and potent transcriptional activators to a target locus by a single guide RNA. It enables robust gene activation in human cells even with a single DNA copy and is able to promote lifespan of Caenorhabditis elegans through activation of longevity-regulating genes. As proof-of-concept, delivered within an all-in-one adeno-associated virus (AAV), miniCAFE can activate Fgf21 expression in the liver and regulate energy metabolism in adult mice. Thus, miniCAFE holds great therapeutic potential against human diseases.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Factores de Crecimiento de Fibroblastos/metabolismo , Edición Génica , ARN Guía de Kinetoplastida/metabolismo , Animales , Caenorhabditis elegans , Campylobacter jejuni , Células HEK293 , Humanos , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL
7.
BMC Surg ; 23(1): 353, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980480

RESUMEN

BACKGROUND: This study aimed to compare the postoperative quality of life (PQOL) between non-small-cell lung cancer (NSCLC) patients who underwent video-assisted thoracoscopic sublobar resection (subsegment, segment, or wedge) and lobectomy. Meanwhile, we developed a PQOL scale for patients with NSCLC after optimization. METHODS: Developing and evaluating the postoperative quality-of-life scale of non-small-cell lung cancer (NSCLC-PQOL) followed by the international principles for developing quality-of-life scale. Therefore, we used the NSCLC-PQOL scale to evaluate the PQOL of patients who underwent different surgeries. RESULTS: The overall PQOL of patients who underwent video-assisted thoracoscopic lobectomy and sublobar resection gradually worsened from discharge to 3 months postoperatively and progressively improved from three to 6 months postoperatively. And the sublobar resection group showed better PQOL in chest tightness, breath shortness, breathlessness, cough and expectoration than the lobectomy group, and the differences were statistically significant (P < 0.05). The final version of the NSCLC-PQOL contained three dimensions: "signs-symptoms", "psychological and psychiatric", and "social-life" dimensions. CONCLUSIONS: The sublobar resection group showed better PQOL in "chest tightness", "breath shortness", "breathlessness", "cough", and "expectoration" than the lobectomy group. Twenty-two items formed a well-behaved PQOL scale after being validated satisfactorily. The scale was a suitable rating tool for evaluating the NSCLC-PQOL of patients. TRIAL REGISTRATION: As this study was a retrospective study and not a clinical trial, we did not register this study in the Chinese Clinical Trial Registry.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/patología , Estudios Retrospectivos , Calidad de Vida , Neumonectomía/métodos , Estadificación de Neoplasias
8.
J Virol ; 95(18): e0085321, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34232065

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing acute intestinal infection in pigs, with high mortality often seen in neonatal pigs. The newborns rely on innate immune responses against invading pathogens because of lacking adaptive immunity. However, how PEDV disables the innate immunity of newborns toward severe infection remains unknown. We found that PEDV infection led to reduced expression of histone deacetylases (HDACs), especially HDAC1, in porcine IPEC-J2 cells. HDACs are considered important regulators of innate immunity. We hypothesized that PEDV interacts with certain host factors to regulate HDAC1 expression in favor of its replication. We show that HDAC1 acted as a negative regulator of PEDV replication in IPEC-J2 cells, as shown by chemical inhibition, gene knockout, and overexpression. A GC-box (GCCCCACCCCC) within the HDAC1 promoter region was identified for Sp1 binding in IPEC-J2 cells. Treatment of the cells with Sp1 inhibitor mithramycin A inhibited HDAC1 expression, indicating direct regulation of HDAC1 expression by Sp1. Of the viral proteins that were overexpressed in IPEC-J2 cells, the N protein was found to be present in the nuclei and more inhibitory to HDAC1 transcription. The putative nuclear localization sequence 261PKKNKSR267 contributed to its nuclear localization. The N protein interacted with Sp1 and interfered with its binding to the promoter region, thereby inhibiting its transcriptional activity for HDAC1 expression. Our findings reveal a novel mechanism of PEDV evasion of the host responses, offering implications for studying the infection processes of other coronaviruses. IMPORTANCE The enteric coronavirus porcine epidemic diarrhea virus (PEDV) causes fatal acute intestinal infection in neonatal pigs that rely on innate immune responses. Histone deacetylases (HDACs) play important roles in innate immune regulation. Our study found PEDV suppresses HDAC1 expression via the interaction of its N protein and porcine Sp1, which identified a novel mechanism of PEDV evasion of the host responses to benefit its replication. This study suggests that other coronaviruses, including SARS-CoV and SARS-CoV-2, also make use of their N proteins to intercept the host immune responses in favor of their infection.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Células Epiteliales/virología , Histona Desacetilasa 1/antagonistas & inhibidores , Mucosa Intestinal/virología , Factor de Transcripción Sp1/metabolismo , Enfermedades de los Porcinos/virología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Células Cultivadas , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Virus de la Diarrea Epidémica Porcina/patogenicidad , Factor de Transcripción Sp1/genética , Porcinos , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/patología , Proteínas no Estructurales Virales/genética
9.
Opt Express ; 30(25): 45459-45470, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522951

RESUMEN

The nonlinear dynamical behaviors of a semiconductor microcavity laser with frequency comb injection have been experimentally and numerically investigated. The microcavity laser is harmonically locked to a unit fraction of the comb spacing due to the undamped relaxation oscillation at certain conditions, creating additional comb lines with reduced frequency spacing. The stability maps indicating various locking states are obtained based on rate equations, which demonstrates that the locking regions are closely related to the relaxation oscillation. Moreover, the microcavity laser with comb injection leads to spectral broadening of the original comb and the number of comb lines raises from 3 to 13. Owing to the large modulation bandwidth of the microcavity laser, the comb lines and the frequency spacing can be tailored over a wide range by varying the injection parameters.

10.
Opt Express ; 29(24): 39685-39695, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809326

RESUMEN

We propose and demonstrate a circular-side octagonal microcavity (COM) semiconductor laser with a spatially distributed current injection for manipulating the lasing modes. There are two types of high-quality-factor whispering-gallery (WG) modes with distinct field patterns in a COM: the four-bounced quadrilateral modes and the eight-bounced octagonal modes. By designing two separated p-electrodes, the COM laser is divided into two regions that are pumped independently to select specific modes for lasing. The two types of WG modes lase simultaneously when the two regions are injected with equivalent currents. Degeneracy removal of the quadrilateral modes is observed in both simulation and experiment when the two regions are injected with inequivalent currents. The quadrilateral modes are suppressed when one of the two regions is un-injected or biased with a negative current, and single-octagonal-mode lasing is realized. The results show that the lasing modes can be efficiently manipulated with the spatially distributed current injection considering the distinct field patterns of different WG modes in the microcavities, which can promote the practical application of the microcavity lasers.

11.
Proc Natl Acad Sci U S A ; 113(12): 3185-90, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26944080

RESUMEN

Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.


Asunto(s)
Movimiento Celular , Hidrogeles , Células Madre Pluripotentes Inducidas/citología , Proteína 2 de Unión a Metil-CpG/fisiología , Neuronas/metabolismo , Humanos
12.
J Lipid Res ; 59(2): 330-338, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29229738

RESUMEN

Disregulation of fatty acid oxidation, one of the major mechanisms for maintaining hepatic lipid homeostasis under fasting conditions, leads to hepatic steatosis. Although obesity and type 2 diabetes-induced endoplasmic reticulum (ER) stress contribute to hepatic steatosis, it is largely unknown how ER stress regulates fatty acid oxidation. Here we show that fasting glucagon stimulates the dephosphorylation and nuclear translocation of histone deacetylase 5 (HDAC5), where it interacts with PPARα and promotes transcriptional activity of PPARα. As a result, overexpression of HDAC5 but not PPARα binding-deficient HDAC5 in liver improves lipid homeostasis, whereas RNAi-mediated knockdown of HDAC5 deteriorates hepatic steatosis. ER stress inhibits fatty acid oxidation gene expression via calcium/calmodulin-dependent protein kinase II-mediated phosphorylation of HDAC5. Most important, hepatic overexpression of a phosphorylation-deficient mutant HDAC5 2SA promotes hepatic fatty acid oxidation gene expression and protects against hepatic steatosis in mice fed a high-fat diet. We have identified HDAC5 as a novel mediator of hepatic fatty acid oxidation by fasting and ER stress signals, and strategies to promote HDAC5 dephosphorylation could serve as new tools for the treatment of obesity-associated hepatic steatosis.


Asunto(s)
Estrés del Retículo Endoplásmico , Ayuno/metabolismo , Ácidos Grasos/metabolismo , Histona Desacetilasas/metabolismo , Hígado/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción
14.
Nature ; 474(7350): 212-5, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21572395

RESUMEN

Induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells with defined factors, hold great promise for regenerative medicine as the renewable source of autologous cells. Whereas it has been generally assumed that these autologous cells should be immune-tolerated by the recipient from whom the iPSCs are derived, their immunogenicity has not been vigorously examined. We show here that, whereas embryonic stem cells (ESCs) derived from inbred C57BL/6 (B6) mice can efficiently form teratomas in B6 mice without any evident immune rejection, the allogeneic ESCs from 129/SvJ mice fail to form teratomas in B6 mice due to rapid rejection by recipients. B6 mouse embryonic fibroblasts (MEFs) were reprogrammed into iPSCs by either retroviral approach (ViPSCs) or a novel episomal approach (EiPSCs) that causes no genomic integration. In contrast to B6 ESCs, teratomas formed by B6 ViPSCs were mostly immune-rejected by B6 recipients. In addition, the majority of teratomas formed by B6 EiPSCs were immunogenic in B6 mice with T cell infiltration, and apparent tissue damage and regression were observed in a small fraction of teratomas. Global gene expression analysis of teratomas formed by B6 ESCs and EiPSCs revealed a number of genes frequently overexpressed in teratomas derived from EiPSCs, and several such gene products were shown to contribute directly to the immunogenicity of the B6 EiPSC-derived cells in B6 mice. These findings indicate that, in contrast to derivatives of ESCs, abnormal gene expression in some cells differentiated from iPSCs can induce T-cell-dependent immune response in syngeneic recipients. Therefore, the immunogenicity of therapeutically valuable cells derived from patient-specific iPSCs should be evaluated before any clinic application of these autologous cells into the patients.


Asunto(s)
Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/trasplante , Animales , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/inmunología , Fibroblastos/citología , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Plásmidos/genética , Teratoma/genética , Teratoma/inmunología , Trasplante Homólogo/inmunología , Trasplante Isogénico/inmunología , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunología
15.
J Cell Sci ; 126(Pt 2): 542-53, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23203807

RESUMEN

During nerve regeneration, neurite growth is regulated by both intrinsic molecules and extracellular factors. Here, we found that inhibitor 5 of protein phosphatase 1 (IPP5), a newly identified inhibitory subunit of protein phosphatase 1 (PP1), inhibited neurite growth in primary sensory neurons as an intrinsic regulator. IPP5 was highly expressed in the primary sensory neurons of rat dorsal root ganglion (DRG) and was downregulated after sciatic nerve axotomy. Knocking down IPP5 with specific shRNA increased the length of the longest neurite, the total neurite length and the number of neurite ends in cultured rat DRG neurons. Mutation of the PP1-docking motif K(8)IQF(11) or the PP1-inhibiting motif at Thr(34) eliminated the IPP5-induced inhibition of neurite growth. Furthermore, biochemical experiments showed that IPP5 interacted with type I transforming growth factor-ß receptor (TßRI) and PP1 and enhanced transforming growth factor-ß (TGF-ß)/Smad signaling in a PP1-dependent manner. Overexpressing IPP5 in DRG neurons aggravated TGF-ß-induced inhibition of neurite growth, which was abolished by blocking PP1 or IPP5 binding to PP1. Blockage of TGF-ß signaling with the TßRI inhibitor SB431542 or Smad2 shRNA attenuated the IPP5-induced inhibition of neurite growth. Thus, these data indicate that selectively expressed IPP5 inhibits neurite growth by maintaining TGF-ß signaling in primary sensory neurons.


Asunto(s)
Neuritas/fisiología , Proteínas/metabolismo , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Secuencia de Aminoácidos , Animales , Técnicas de Cultivo de Célula , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Datos de Secuencia Molecular , Neuritas/metabolismo , Proteínas/genética , Ratas , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteína Smad2/genética , Transfección
16.
Stem Cells ; 32(1): 157-65, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24038750

RESUMEN

Oct4 is critical to maintain the pluripotency of human embryonic stem cells (hESCs); however, the underlying mechanism remains to be fully understood. Here, we report that silencing of Oct4 in hESCs leads to the activation of tumor suppressor p53, inducing the differentiation of hESCs since acute disruption of p53 in p53 conditional knockout (p53CKO) hESCs prevents the differentiation of hESCs after Oct4 depletion. We further discovered that the silencing of Oct4 significantly reduces the expression of Sirt1, a deacetylase known to inhibit p53 activity and the differentiation of ESCs, leading to increased acetylation of p53 at lysine 120 and 164. The importance of Sirt1 in mediating Oct4-dependent pluripotency is revealed by the finding that the ectopic expression of Sirt1 in Oct4-silenced hESCs prevents p53 activation and hESC differentiation. In addition, using knock-in approach, we revealed that the acetylation of p53 at lysine 120 and 164 is required for both stabilization and activity of p53 in hESCs. In summary, our findings reveal a novel role of Oct4 in maintaining the pluripotency of hESCs by suppressing pathways that induce differentiation. Considering that p53 suppresses pluripotency after DNA damage response in ESCs, our findings further underscore the stringent mechanism to coordinate DNA damage response pathways and pluripotency pathways in order to maintain the pluripotency and genomic stability of hESCs.


Asunto(s)
Células Madre Embrionarias/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Daño del ADN , Células Madre Embrionarias/citología , Técnicas de Inactivación de Genes , Humanos , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología , Transfección , Proteína p53 Supresora de Tumor/genética
17.
Zhonghua Nei Ke Za Zhi ; 54(7): 633-7, 2015 Jul.
Artículo en Zh | MEDLINE | ID: mdl-26359028

RESUMEN

OBJECTIVE: To observe the effect of continuous positive airway pressure ventilation on hypersensitive C reaction protein (hsCRP) and 8-isoprostane in patients with obstructive sleep apnea hypopnea syndrome (OSAHS). METHODS: A total of 78 OSAHS patients were enrolled and monitored by polysomnography (PSG) in January to March, 2013. Another 40 healthy persons were chosen as controls during the same time. According to apnea hypopnea index (AHI) and oxygen saturation, the patients were divided into mild, moderate and severe groups. Blood and urinary 8-isoprostane and hsCRP levels were detected before and after monitoring. After continuous positive airway pressure treatment for three months, blood and urinary 8-isoprostane and hsCRP were also detected in three groups. RESULTS: (1) In OSAHS patients, blood 8-isoprostane levels before and after sleep monitoring were (273.80±55.83) ng/L and (337.18±56.28) ng/L urinary 8-isoprostane (35.65±7.08) ng/L and (48.30±14.17) ng/L, hsCRP (7.63±6.10) µg/L and (9.68±8.55)µg/L, respectively. Each parameter reached a significant difference before and after sleep (P<0.05). (2) The levels of blood CRP and urinary 8-isoprostane in the control group before sleep were (4.56±2.43) µg/L, (264.14±33.61) ng/L, (32.77±9.61) ng/L, after sleep were (4.33±2.08) µg/L, (284.27±47.51) ng/L, (31.13±8.24) ng/L. All the levels were less than those of OSAHS group (P<0.05). (3) The levels of blood 8-isoprostane in mild, moderate and severe groups after monitoring were (308.16±53.48) ng/L, (327.36±59.05) ng/L, (340.39±55.31) ng/L respectively, and urinary 8-isoprostane were (35.23±11.28) ng/L, (38.30±10.89) ng/L, (44.57±12.69) ng/L, hsCRP were (5.63±4.26) µg/L, (6.96±4.43) µg/L, (8.92±7.84) µg/L. None of these three parameters showed significant difference between the three groups (P>0.05). However, compared with the control group, blood and urine 8-isoprostane and hsCRP levels of any groups had significant differences (all P values<0.05). (3) There was no significant difference in the levels of hsCRP and 8-isoprostane after sleep between the three groups in OSAHS (P>0.05). (4) Urinary 8-isoprostane level after PSG was positively correlated with hsCRP (r=0.498, P<0.01). Either 8-isoprostane or hsCRP level was correlated with AHI (r=0.479, r=0.550; P<0.01). 8-isoprostane and hsCRP levels were positively correlated with time of blood hemoglobin oxygen saturation below 90% (r=0.413, r=0.502; P<0.01). (5) After continuous positive airway pressure treatment, the levels of 8-isoprostane and hsCRP both in blood or urine were decreased in the three groups of OSAHS patients (P<0.05). CONCLUSIONS: Long term intermittent hypoxia in patients with OSAHS results in enhanced oxidative stress reaction and over-generated inflammatory mediators. There is a positive correlation between oxidative stress and inflammatory mediators, which promotes each other, leading to the organ dysfunction induced by hypoxia.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Apnea Obstructiva del Sueño/sangre , Apnea Obstructiva del Sueño/metabolismo , Proteína C-Reactiva , Dinoprost/análogos & derivados , Humanos , Estrés Oxidativo , Polisomnografía , Sueño/fisiología , Ronquido , Factor de Necrosis Tumoral alfa/análisis
18.
Cell Death Differ ; 31(3): 322-334, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38321214

RESUMEN

Pancreatic ß-cell failure by WFS1 deficiency is manifested in individuals with wolfram syndrome (WS). The lack of a suitable human model in WS has impeded progress in the development of new treatments. Here, human pluripotent stem cell derived pancreatic islets (SC-islets) harboring WFS1 deficiency and mouse model of ß cell specific Wfs1 knockout were applied to model ß-cell failure in WS. We charted a high-resolution roadmap with single-cell RNA-seq (scRNA-seq) to investigate pathogenesis for WS ß-cell failure, revealing two distinct cellular fates along pseudotime trajectory: maturation and stress branches. WFS1 deficiency disrupted ß-cell fate trajectory toward maturation and directed it towards stress trajectory, ultimately leading to ß-cell failure. Notably, further investigation of the stress trajectory identified activated integrated stress response (ISR) as a crucial mechanism underlying WS ß-cell failure, characterized by aberrant eIF2 signaling in WFS1-deficient SC-islets, along with elevated expression of genes in regulating stress granule formation. Significantly, we demonstrated that ISRIB, an ISR inhibitor, efficiently reversed ß-cell failure in WFS1-deficient SC-islets. We further validated therapeutic efficacy in vivo with ß-cell specific Wfs1 knockout mice. Altogether, our study provides novel insights into WS pathogenesis and offers a strategy targeting ISR to treat WS diabetes.


Asunto(s)
Células Secretoras de Insulina , Síndrome de Wolfram , Ratones , Animales , Humanos , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Síndrome de Wolfram/patología , Células Secretoras de Insulina/metabolismo , Ratones Noqueados
19.
Proc Natl Acad Sci U S A ; 107(29): 13117-22, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20615975

RESUMEN

Morphine-induced analgesia and antinociceptive tolerance are known to be modulated by interaction between delta-opioid receptors (DORs) and mu-opioid receptors (MORs) in the pain pathway. However, evidence for expression of DORs in nociceptive small-diameter neurons in dorsal root ganglia (DRG) and for coexistence of DORs with MORs and neuropeptides has recently been challenged. We now report, using in situ hybridization, single-cell PCR, and immunostaining, that DORs are widely expressed not only in large DRG neurons but in small ones and coexist with MORs in peptidergic small DRG neurons, with protachykinin-dependent localization in large dense-core vesicles. Importantly, both DOR and MOR agonists reduce depolarization-induced Ca(2+) currents in single small DRG neurons and inhibit afferent C-fiber synaptic transmission in the dorsal spinal cord. Thus, coexistence of DORs and MORs in small DRG neurons is a basis for direct interaction of opioid receptors in modulation of nociceptive afferent transmission and opioid analgesia.


Asunto(s)
Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Animales , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Nociceptores/citología , Nociceptores/efectos de los fármacos , Péptidos/metabolismo , Precursores de Proteínas/farmacología , Transporte de Proteínas/efectos de los fármacos , Ratas , Receptores Opioides delta/genética , Receptores Opioides mu/genética , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/metabolismo , Taquicininas/farmacología
20.
Nat Metab ; 5(3): 481-494, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36879120

RESUMEN

Sympathetic neurons activate thermogenic adipocytes through release of catecholamine; however, the regulation of sympathetic innervation by thermogenic adipocytes is unclear. Here, we identify primary zinc ion (Zn) as a thermogenic adipocyte-secreted factor that promotes sympathetic innervation and thermogenesis in brown adipose tissue and subcutaneous white adipose tissue in male mice. Depleting thermogenic adipocytes or antagonizing ß3-adrenergic receptor on adipocytes impairs sympathetic innervation. In obesity, inflammation-induced upregulation of Zn chaperone protein metallothionein-2 decreases Zn secretion from thermogenic adipocytes and leads to decreased energy expenditure. Furthermore, Zn supplementation ameliorates obesity by promoting sympathetic neuron-induced thermogenesis, while sympathetic denervation abrogates this antiobesity effect. Thus, we have identified a positive feedback mechanism for the reciprocal regulation of thermogenic adipocytes and sympathetic neurons. This mechanism is important for adaptive thermogenesis and could serve as a potential target for the treatment of obesity.


Asunto(s)
Adipocitos , Zinc , Masculino , Ratones , Animales , Zinc/metabolismo , Zinc/farmacología , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Termogénesis , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA