Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 10(29): eado5645, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39018409

RESUMEN

Perovskite light-emitting diodes (PeLEDs) provide excellent opportunities for low-cost, color-saturated, and large-area displays. However, the performance of blue PeLEDs lags far behind that of their green and red counterparts. Here, we show that the external quantum efficiencies (EQEs) of blue PeLEDs scale linearly with the photoluminescence quantum yields (PL QYs) of CsPb(BrxCl1-x)3 nanocrystals emitting at 460 to 480 nm. The recombination efficiency of carriers is highly sensitive to the chlorine content and the related deep-level defects in nanocrystals, causing notable EQE drops even with minor increases in chlorine defects. Minor adjustments of chlorine content through rubidium compensation on the A-site effectively suppress the formation of nonradiative defects, improving PL QYs while retaining desirable bandgaps for blue-emitting nanocrystals. Our PeLEDs with record-high efficiencies span the blue spectrum, achieving peak EQEs of 12.0% (460 nm), 16.7% (465 nm), 21.3% (470 nm), 24.3% (475 nm), and 26.4% (480 nm). This work exemplifies chlorine-defect control as a key design principle for high-efficiency blue PeLEDs.

2.
J Phys Chem Lett ; 15(26): 6705-6711, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38900573

RESUMEN

Self-assembled monolayers (SAMs) have shown great potential as hole injection materials for perovskite light-emitting diodes due to their low parasitic absorption and ability to adjust energy level alignment. However, the head and anchoring groups on SAM molecules with significant differences in polarity can lead to the formation of micelles in the commonly used alcoholic processing solvent, inhibiting the formation of an intact SAM. In this work, the introduction of methyl groups on carbazole in the phosphonic-acid-based SAM materials is found to facilitate energy level alignment and promote the formation of compact SAMs. The alternative molecular structure also enhances the solvent resistance of poly(9-vinylcarbazole), suppressing interfacial defect densities and nonradiative recombination processes in the emissive perovskites. PeLEDs based on the methyl-containing SAMs exhibit ∼30% enhancement in efficiency. These findings contribute to a better understanding of the design of SAM materials for PeLED applications.

3.
ACS Appl Mater Interfaces ; 16(7): 9012-9019, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38331712

RESUMEN

Perovskite LEDs (PeLEDs) have emerged as a next-generation light-emitting technology. Recent breakthroughs were made in achieving highly stable near-infrared and green PeLEDs. However, the operational lifetimes (T50) of visible PeLEDs under high current densities (>10 mA cm-2) remain unsatisfactory (normally <100 h), limiting the possibilities in solid-state lighting and AR/VR applications. This problem becomes more pronounced for mixed-halide (e.g., red and blue) perovskite emitters in which critical challenges such as halide segregation and spectral instability are present. Here, we demonstrate bright and stable red PeLEDs based on mixed-halide perovskites, showing measured T50 lifetimes of up to ∼357 h at currents of ≥25 mA cm-2, a record for the operational stability of visible PeLEDs under high current densities. The devices produce intense and stable emission with a maximum luminance of 28,870 cd m-2 (radiance: 1584 W sr-1 m-2), which is record-high for red PeLEDs. Key to this demonstration is the introduction of sulfonamide, a dipolar molecular stabilizer that effectively interacts with the ionic species in the perovskite emitters. It suppresses halide segregation and migration into the charge-transport layers, resulting in enhanced stability and brightness of the mixed-halide PeLEDs. These results represent a substantial step toward bright and stable PeLEDs for emerging applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA