Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39408852

RESUMEN

Treatment of articular cartilage remains a great challenge due to its limited self-repair capability. In tissue engineering, a scaffold with both mechanical strength and regenerative capacity has been highly desired. This study developed a double-network scaffold based on natural biomaterials of silk fibroin (SF) and methacrylated hyaluronic acid (MAHA) using three-dimensional (3D) printing technology. Structural and mechanical characteristics of the scaffold was first investigated. To enhance its ability of recruiting endogenous bone marrow mesenchymal stem cells (BMSCs), the scaffold was conjugated with a proven BMSC-specific-affinity peptide E7, and its biocompatibility and capacity of cell recruitment were assessed in vitro. Animal experiments were conducted to evaluate cartilage regeneration after transplantation of the described scaffolds. The SF/HA scaffolds exhibited a hierarchical macro-microporous structure with ideal mechanical properties, and offered a 3D spatial microenvironment for cell migration and proliferation. In vitro experiments demonstrated excellent biocompatibility of the scaffolds to support BMSCs proliferation, differentiation, and extracellular matrix production. In vivo, superior capacity of cartilage regeneration was displayed by the SF/MAHA + E7 scaffold as compared with microfracture and unconjugated SF/MAHA scaffold based on macroscopic, histologic and imaging evaluation. In conclusion, this structurally and functionally optimized SF/MAHA + E7 scaffold may provide a promising approach to repair articular cartilage lesions in situ.


Asunto(s)
Cartílago Articular , Fibroínas , Ácido Hialurónico , Células Madre Mesenquimatosas , Impresión Tridimensional , Regeneración , Andamios del Tejido , Fibroínas/química , Andamios del Tejido/química , Cartílago Articular/fisiología , Ácido Hialurónico/química , Animales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos/métodos , Proliferación Celular , Materiales Biocompatibles/química , Diferenciación Celular , Conejos
2.
Arthroscopy ; 38(3): 850-859.e2, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34052387

RESUMEN

PURPOSE: To investigate the kinematics differences between round-tunnel (ROT) and flat-tunnel (FLT) techniques in anterior cruciate ligament (ACL) reconstruction when using hamstring graft. METHODS: Nine matched pairs of fresh-frozen cadaveric knees were evaluated for the kinematics of intact, ACL-sectioned, and either ROT or FLT reconstructed knees. The graft bundles for FLT technique were separately tensioned. A 6 degrees of freedom robotic system was used to assess knee laxity: (1) 134-N anterior tibial load at 0°, 15°, 30°, 60°, and 90°of knee flexion; (2) 10 Nm of valgus torque followed by 5 Nm of internal rotation torque simulates a pivot-shift test at 15° and 30°; (3) 5-Nm internal and external rotation torques at 0°, 15°, 30°, 60°, and 90°; (4) 10-Nm varus and valgus torques at 15° and 30°. RESULTS: Significant differences were found for ROT versus FLT techniques in terms of the simulated pivot-shift test at 15° (2.5 mm vs 1.4 mm, respectively, difference from intact; P =.039) and the internal rotation test at 15° (2.5° vs 0.5°, respectively, difference from intact; P =.034) and 30° (2.0° vs 0.4°, respectively, difference from intact; P =.014). No significant differences were found between groups during 134-N anterior tibial load, external rotation and valgus/varus rotation. Neither technique was able to reproduce the intact state during an anterior tibial load and simulated pivot-shift test. CONCLUSIONS: The FLT technique with independently tensioned bundles shows the same anterior control as the ROT technique but better restores rotational stability in terms of the simulated pivot-shift test and the internal rotation test in anatomic ACL reconstruction at time zero. CLINICAL RELEVANCE: The FLT technique with independently tensioned bundles of ACL reconstruction appears to be a viable, more anatomic technique than the ROT technique in mimicking flat anatomy and rotational stability of native ACL.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Inestabilidad de la Articulación , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Fenómenos Biomecánicos , Cadáver , Humanos , Inestabilidad de la Articulación/cirugía , Articulación de la Rodilla/cirugía , Rango del Movimiento Articular
3.
Knee Surg Sports Traumatol Arthrosc ; 27(11): 3543-3551, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30877317

RESUMEN

PURPOSE: The purpose of this study was to evaluate whether a flattened bone tunnel has a positive effect on the tendon-bone healing (TBH) process in the early period after anterior cruciate ligament (ACL) reconstruction. METHODS: Seventy-two New Zealand White rabbits were randomly allocated into two groups, the flattened tunnel (FT) group and the conventional round tunnel (RT) group. We compared the cross-sectional areas and diameters of the bone tunnels between the two groups through computed tomography (CT) scanning. TBH results between the two groups were assessed by histological analysis, micro-CT scanning and biomechanical tests at 4 weeks, 8 weeks and 12 weeks after operation. RESULTS: The cross-sectional areas of the bone tunnels between the two groups were almost the same. However, the shape of bone tunnels in the FT group was more flattened. A faster cellular and collagen remoulding process were found in the FT group. Semiquantitative histological analysis of Safranin O staining showed that there was more fibrocartilage formation in the interface region in the FT group (P < 0.05). Sirius Red staining showed that the tissues in the interface areas were more intense in the FT group. Micro-CT scanning showed that more new bone formation could be found in the interface region in the FT group. The biomechanical tests also showed that FT ACL reconstruction will result in a stronger regenerated tendon-bone interface. CONCLUSIONS: Our study found that a flattened bone tunnel accelerated TBH in the early period after ACL reconstruction surgery in a rabbit model, which lays the groundwork for further clinical practice of this ACL reconstruction method.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior/métodos , Huesos/fisiología , Huesos/cirugía , Tendones/fisiología , Tendones/cirugía , Cicatrización de Heridas , Animales , Ligamento Cruzado Anterior/cirugía , Colágeno/biosíntesis , Fibrocartílago/fisiología , Masculino , Modelos Animales , Conejos , Distribución Aleatoria
4.
Sci Rep ; 14(1): 22065, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333567

RESUMEN

A novel, parameter-independent multiscale correlational constitutive model has been devised to predict thermomechanical properties of Si-diamond-SiC and Si-diamond composites, including the effective elastic modulus, effective bulk modulus, effective shear modulus, effective Poisson's ratio, average coefficients of thermal expansion as well as thermal conductivity. Based on this model, the effective thermomechanical response of two kinds of composites was simulated, and the underlying mechanisms of thermomechanical coupling between constituents were also critically evaluated. The findings were shown that the effective elastic properties of composites, including effective elastic modulus, effective bulk modulus, effective shear modulus, increased with diamond and SiC, and that the introduction of dispersed diamond with highly thermal conductivity and lowly thermal expansion significantly enhanced thermophysical properties of Si-diamond-SiC composites. The thermomechanical coupling of these composites was influenced by the effective elastic properties of composites and the disparity in the intrinsic properties of constituents.

5.
Adv Sci (Weinh) ; : e2403788, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344749

RESUMEN

The meniscus is a semilunar wedge-shaped fibrocartilage tissue within the knee joint that is important for withstanding mechanical shock during joint motion. The intrinsic healing capacity of meniscus tissue is very limited, which makes meniscectomy the primary treatment method in the clinic. An effective translational strategy for regenerating the meniscus after total or subtotal meniscectomy, particularly for extensive meniscal lesions or degeneration, is yet to be developed. The present study demonstrates that the endothelial mesenchymal transition (EndMT) contributes to meniscal regeneration. The mechanical stimulus facilitated EndMT by activating TGF-ß2 signaling. A handheld bioprinter system to intraoperatively fabricate a porous meniscus scaffold according to the resected meniscus tissue is developed; this can simplify the scaffold fabrication procedure and period. The transplantation of a porous meniscus scaffold combined with a postoperative regular exercise stimulus facilitated the regeneration of anisotropic meniscal fibrocartilaginous tissue and protected the joint cartilage from degeneration in an ovine subtotal meniscectomy model. Single-cell RNA sequencing and immunofluorescence co-staining analyses further confirmed the occurrence of EndMT during meniscal regeneration. EndMT-transformed cells gave rise to fibrochondrocytes, subsequently contributing to meniscal fibrocartilage regeneration. Thus, an efficient translational strategy to facilitate meniscal regeneration is developed.

6.
Adv Sci (Weinh) ; 10(26): e2303650, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37424038

RESUMEN

In clinical practice, repairing osteochondral defects presents a challenge due to the varying biological properties of articular cartilages and subchondral bones. Thus, elucidating how spatial microenvironment-specific biomimetic scaffolds can be used to simultaneously regenerate osteochondral tissue is an important research topic. Herein, a novel bioinspired double-network hydrogel scaffold produced via 3D printing with tissue-specific decellularized extracellular matrix (dECM) and human adipose mesenchymal stem cell (MSC)-derived exosomes is described. The bionic hydrogel scaffolds promote rat bone marrow MSC attachment, spread, migration, proliferation, and chondrogenic and osteogenic differentiation in vitro, as determined based on the sustained release of bioactive exosomes. Furthermore, the 3D-printed microenvironment-specific heterogeneous bilayer scaffolds efficiently accelerate the simultaneous regeneration of cartilage and subchondral bone tissues in a rat preclinical model. In conclusion, 3D dECM-based microenvironment-specific biomimetics encapsulated with bioactive exosomes can serve as a novel cell-free recipe for stem cell therapy when treating injured or degenerative joints. This strategy provides a promising platform for complex zonal tissue regeneration whilst holding attractive clinical translation potential.


Asunto(s)
Exosomas , Andamios del Tejido , Ratas , Humanos , Animales , Osteogénesis , Hidrogeles , Cartílago , Regeneración Ósea , Impresión Tridimensional
7.
Sci Adv ; 9(45): eadg8138, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37939174

RESUMEN

Meniscus is a complex and crucial fibrocartilaginous tissue within the knee joint. Meniscal regeneration remains to be a scientific and translational challenge. We clarified that mesenchymal stem cells (MSCs) participated in meniscal maturation and regeneration using MSC-tracing transgenic mice model. Here, inspired by meniscal natural maturational and regenerative process, we developed an effective and translational strategy to facilitate meniscal regeneration by three-dimensionally printing biomimetic meniscal scaffold combining autologous synovium transplant, which contained abundant intrinsic MSCs. We verified that this facilitated anisotropic meniscus-like tissue regeneration and protected cartilage from degeneration in large animal model. Mechanistically, the biomechanics and matrix stiffness up-regulated Piezo1 expression, facilitating concerted activation of calcineurin and NFATc1, further activated YAP-pSmad2/3-SOX9 axis, and consequently facilitated fibrochondrogenesis of MSCs during meniscal regeneration. In addition, Piezo1 induced by biomechanics and matrix stiffness up-regulated collagen cross-link enzyme expression, which catalyzed collagen cross-link and thereby enhanced mechanical properties of regenerated tissue.


Asunto(s)
Menisco , Células Madre Mesenquimatosas , Animales , Ratones , Menisco/metabolismo , Fibrocartílago/metabolismo , Células Madre Mesenquimatosas/metabolismo , Colágeno/metabolismo , Modelos Animales , Ratones Transgénicos , Canales Iónicos/metabolismo
8.
Sci Bull (Beijing) ; 68(17): 1904-1917, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37558534

RESUMEN

Osteochondral defects pose a great challenge and a satisfactory strategy for their repair has yet to be identified. In particular, poor repair could result in the generation of fibrous cartilage and subchondral bone, causing the degeneration of osteochondral tissue and eventually leading to repair failure. Herein, taking inspiration from the chemical elements inherent in the natural extracellular matrix (ECM), we proposed a novel ECM-mimicking scaffold composed of natural polysaccharides and polypeptides for osteochondral repair. By meticulously modifying natural biopolymers to form reversible guest-host and rigid covalent networks, the scaffold not only exhibited outstanding biocompatibility, cell adaptability, and biodegradability, but also had excellent mechanical properties that can cater to the environment of osteochondral tissue. Additionally, benefiting from the drug-loading group, chondrogenic and osteogenic drugs could be precisely integrated into the specific zone of the scaffold, providing a tissue-specific microenvironment to facilitate bone and cartilage differentiation. In rabbit osteochondral defects, the ECM-inspired scaffold not only showed a strong capacity to promote hyaline cartilage formation with typical lacuna structure, sufficient mechanical strength, good elasticity, and cartilage-specific ECM deposition, but also accelerated the regeneration of quality subchondral bone with high bone mineralization density. Furthermore, the new cartilage and subchondral bone were heterogeneous, a trait that is typical of the natural landscape, reflecting the gradual progression from cartilage to subchondral bone. These results suggest the potential value of this bioinspired osteochondral scaffold for clinical applications.


Asunto(s)
Matriz Extracelular , Cartílago Hialino , Animales , Conejos , Huesos , Osteogénesis
9.
Front Plant Sci ; 14: 1138693, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251760

RESUMEN

The content of nicotine, a critical component of tobacco, significantly influences the quality of tobacco leaves. Near-infrared (NIR) spectroscopy is a widely used technique for rapid, non-destructive, and environmentally friendly analysis of nicotine levels in tobacco. In this paper, we propose a novel regression model, Lightweight one-dimensional convolutional neural network (1D-CNN), for predicting nicotine content in tobacco leaves using one-dimensional (1D) NIR spectral data and a deep learning approach with convolutional neural network (CNN). This study employed Savitzky-Golay (SG) smoothing to preprocess NIR spectra and randomly generate representative training and test datasets. Batch normalization was used in network regularization to reduce overfitting and improve the generalization performance of the Lightweight 1D-CNN model under a limited training dataset. The network structure of this CNN model consists of four convolutional layers to extract high-level features from the input data. The output of these layers is then fed into a fully connected layer, which uses a linear activation function to output the predicted numerical value of nicotine. After the comparison of the performance of multiple regression models, including support vector regression (SVR), partial least squares regression (PLSR), 1D-CNN, and Lightweight 1D-CNN, under the preprocessing method of SG smoothing, we found that the Lightweight 1D-CNN regression model with batch normalization achieved root mean square error (RMSE) of 0.14, coefficient of determination (R 2) of 0.95, and residual prediction deviation (RPD) of 5.09. These results demonstrate that the Lightweight 1D-CNN model is objective and robust and outperforms existing methods in terms of accuracy, which has the potential to significantly improve quality control processes in the tobacco industry by accurately and rapidly analyzing the nicotine content.

10.
Bioengineering (Basel) ; 10(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38136013

RESUMEN

In the present study, 24 rabbits were firstly used to evaluate the apoptosis index and matrix degeneration after untreated adult meniscal tears. Vertical tears (0.25 cm in length) were prepared in the avascular zone of the anterior horn. Specimens were harvested at 1, 3, 6, 12 weeks postoperatively. The apoptosis index around tear sites stayed at a high level throughout the whole follow-up period. The depletion of glycosaminoglycans (GAG) and aggrecan at the tear site was observed, while the deposition of COL I and COL II was not affected, even at the last follow-up of 12 weeks after operation. The expression of SOX9 decreased significantly; no cellularity was observed at the wound interface at all timepoints. Secondly, another 20 rabbits were included to evaluate the effects of anti-apoptosis therapy on rescuing meniscal cells and enhancing meniscus repair. Longitudinal vertical tears (0.5 cm in length) were made in the meniscal avascular body. Tears were repaired by the inside-out suture technique, or repaired with sutures in addition to fibrin gel and blank silica nanoparticles, or silica nanoparticles encapsulating apoptosis inhibitors (z-vad-fmk). Samples were harvested at 12 months postoperatively. We found the locally administered z-vad-fmk agent at the wound interface significantly alleviated meniscal cell apoptosis and matrix degradation, and enhanced meniscal repair in the avascular zone at 12 months after operation. Thus, local administration of caspase inhibitors (z-vad-fmk) is a promising therapeutic strategy for alleviating meniscal cell loss and enhancing meniscal repair after adult meniscal tears in the avascular zone.

11.
Cartilage ; 14(1): 106-118, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36444115

RESUMEN

OBJECTIVE: To compare the severity of cartilage degeneration after meniscal tears between juvenile and adult rabbits. DESIGN: This study included 20 juvenile rabbits (2 weeks after birth) and 20 adult rabbits (6 months after birth). Meniscal tears were prepared in the anterior horn of medial menisci of right knees. Rabbits were sacrificed at 1, 3, 6, and 12 weeks postoperatively. Cartilage degenerations in the medial femoral condyle and medial tibial plateau were evaluated macroscopically and histologically. The semiquantitative assessment of cartilage degeneration was graded by macroscopic Outerbridge scoring system and histological Osteoarthritis Research Society International (OARSI) scoring system. RESULTS: In juvenile rabbits, the morphologically intact cartilage and normal extracellular matrix architecture were observed at the first week postoperatively. Mild uneven cartilage surface and toluidine blue depletion in the medial femoral condyle were observed on histological assessment at 3 weeks postoperatively. The worsened cartilage deterioration demonstrating chondral fibrillation, prominent cell death, and glycosaminoglycan (GAG) release was observed at 6 and 12 weeks postoperatively. In adult rabbits, only mild cartilage degeneration was observed in the medial femoral condyle at 12 weeks postoperatively. The outcomes of Outerbridge and OARSI scores were consistent with the aforementioned findings in juvenile and adult rabbits. CONCLUSIONS: Our study validated that earlier and more severe cartilage degenerations were observed in juvenile rabbits after meniscal tears compared with adult rabbits. Moreover, the post-tear cartilage degeneration demonstrated regional specificity corresponded to the tear position. However, caution is warranted when extrapolating results of animal models to humans.


Asunto(s)
Enfermedades de los Cartílagos , Traumatismos de la Rodilla , Osteoartritis , Adulto , Humanos , Animales , Conejos , Articulación de la Rodilla/patología , Enfermedades de los Cartílagos/patología , Traumatismos de la Rodilla/cirugía , Meniscos Tibiales/cirugía , Meniscos Tibiales/patología , Tibia/patología , Osteoartritis/patología
12.
Sci Rep ; 12(1): 22317, 2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566306

RESUMEN

The multiscale elastic response to the macroscopic stress was simulated to reveal the multi-scale correlation of elastic properties of the medium carbon steel. Based on the multiscale correlation constitutive equations derived from this constitutive model, the effective elastic constants (EECs) of medium carbon steel are predicted. In addition, the diffraction elastic constants (DECs) of the constituents of the medium carbon steel are also evaluated. And then, the simple in-situ X-ray diffraction experiments were performed for the measurements of DECs and EECs of treated 35CrMo steel during the four-point bending. Compared with the experimental measurements and different existing models, the results demonstrated that the developed constitutive model was in good agreement with the measured values of the EECs and DECs, and that the feasibility and reliability of the constitutive model used to simulate multiscale elastic response could reveal the correlation between the material and its constitutes.

13.
Nat Commun ; 13(1): 7139, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414669

RESUMEN

Emerging evidence suggests that osteoarthritis is associated with high cholesterol levels in some osteoarthritis patients. However, the specific mechanism under this metabolic osteoarthritis phenotype remains unclear. We find that cholesterol metabolism-related gene, LRP3 (low-density lipoprotein receptor-related protein 3) is significantly reduced in high-cholesterol diet mouse's cartilage. By using Lrp3-/- mice in vivo and LRP3 lentiviral-transduced chondrocytes in vitro, we identify that LRP3 positively regulate chondrocyte extracellular matrix metabolism, and its deficiency aggravate the degeneration of cartilage. Regardless of diet, LRP3 overexpression in cartilage attenuate anterior cruciate ligament transection induced osteoarthritis progression in rats and Lrp3 knockout-induced osteoarthritis progression in mice. LRP3 knockdown upregulate syndecan-4 by activating the Ras signaling pathway. We identify syndecan-4 as a downstream molecular target of LRP3 in osteoarthritis pathogenesis. These findings suggest that cholesterol-LRP3- syndecan-4 axis plays critical roles in osteoarthritis development, and LRP3 gene therapy may provide a therapeutic regimen for osteoarthritis treatment.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL , Osteoartritis , Sindecano-4 , Animales , Ratones , Ratas , Cartílago/metabolismo , Colesterol/metabolismo , Regulación hacia Abajo , Osteoartritis/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo
14.
J Orthop Translat ; 33: 72-89, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35281522

RESUMEN

Background: Synovium has been confirmed to be the primary contributor to meniscal repair. Particulated Juvenile Allograft Cartilage (PJAC) has demonstrated promising clinical effect on repairing cartilage. The synergistic effect of synovium and PJAC transplant on meniscal fibrocartilaginous repair is unclear. We hypothesize that the transplantation of synovium and PJAC synergistically facilitates meniscal regeneration and the donor cells within graft tissues still survive in the regenerated tissue at the last follow up (16 weeks postoperatively). Methods: The study included 24 mature female rabbits, which were randomly divided into experimental and control groups. A cylindrical full-thickness defect measuring 2.0 â€‹mm was prepared in the avascular portion of the anterior horn of medial meniscus in both knees. The synovium and PJAC transplant were harvested from juvenile male rabbits (2 months after birth). The experimental group received synovium and PJAC transplant encapsulated with fibrin gel. The control groups received synovium transplant encapsulated with fibrin gel, pure fibrin gel and nothing. The macroscopic, imageological and histological evaluations of repaired tissue were performed at 8 weeks and 16 weeks postoperatively. The in situ hybridization (ISH) of male-specific sex-determining region Y-linked (SRY) gene was performed to detect the transplanted cells. Results: The regenerated tissue in experimental group showed superior structural integrity, superficial smoothness, and marginal integration compared to control groups at 8 weeks or 16 weeks postoperatively. More meniscus-like fibrochondrocytes filled the repaired tissue in the experimental group, and the matrix surrounding these cell clusters demonstrated strongly positive safranin O and type 2 collagen immunohistochemistry staining. By SRY gene ISH, the positive SRY signal of experimental group could be detected at 8 weeks (75.72%, median) and 16 weeks (48.69%, median). The expression of SOX9 in experimental group was the most robust, with median positive rates of 65.52% at 8 weeks and 67.55% at 16 weeks. Conclusion: The transplantation of synovium and PJAC synergistically facilitates meniscal regeneration. The donor cells survive for at least 16 weeks in the recipient. The translational potential of this article: This study highlighted the positive effect of PJAC and synovium transplant on meniscal repair. We also clarified the potential repair mechanisms reflected by the survival of donor cells and upregulated expression of meniscal fibrochondrocytes related genes. Thus, based on our study, further clinical experiments are needed to investigate synovium and PJAC transplant as a possible treatment to meniscal defects.

15.
Bioact Mater ; 8: 505-514, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34541416

RESUMEN

Although advances in protein assembly preparation have provided a new platform for drug delivery during tissue engineering, achieving long-term controlled exosome delivery remains a significant challenge. Diffusion-dominated exosome release using protein hydrogels results in burst release of exosomes. Here, a fibroin-based cryo-sponge was developed to provide controlled exosome release. Fibroin chains can self-assemble into silk I structures under ice-cold conditions when annealed above the glass transition temperature. Exosome release is enzyme-responsive, with rates primarily determined by enzymatic degradation of the scaffolds. In vivo experiments have demonstrated that exosomes remain in undigested sponge material for two months, superior to their retention in fibrin glue, a commonly used biomaterial in clinical practice. Fibroin cryo-sponges were implanted subcutaneously in nude mice. The exosome-containing sponge group exhibited better neovascularization and tissue ingrowth effects, demonstrating the efficacy of this exosome-encapsulating strategy by realizing sustained release and maintaining exosome bioactivity. These silk fibroin cryo-sponges containing exosomes provide a new platform for future studies of exosome therapy.

16.
Front Cell Dev Biol ; 9: 758217, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778268

RESUMEN

Injuries to menisci are the most common disease among knee joint-related morbidities and cover a widespread population ranging from children and the general population to the old and athletes. Repair of the injuries in the meniscal avascular zone remains a significant challenge due to the limited intrinsic healing capacity compared to the peripheral vascularized zone. The current surgical strategies for avascular zone injuries remain insufficient to prevent the development of cartilage degeneration and the ultimate emergence of osteoarthritis (OA). Due to the drawbacks of current surgical methods, the research interest has been transferred toward facilitating meniscal avascular zone repair, where it is expected to maintain meniscal tissue integrity, prevent secondary cartilage degeneration and improve knee joint function, which is consistent with the current prevailing management idea to maintain the integrity of meniscal tissue whenever possible. Biological augmentations have emerged as an alternative to current surgical methods for meniscal avascular zone repair. However, understanding the specific biological mechanisms that affect meniscal avascular zone repair is critical for the development of novel and comprehensive biological augmentations. For this reason, this review firstly summarized the current surgical techniques, including meniscectomies and meniscal substitution. We then discuss the state-of-the-art biological mechanisms, including vascularization, inflammation, extracellular matrix degradation and cellular component that were associated with meniscal avascular zone healing and the advances in therapeutic strategies. Finally, perspectives for the future biological augmentations for meniscal avascular zone injuries will be given.

17.
Acta Biomater ; 119: 485-498, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33130305

RESUMEN

Although various biodegradable materials have been investigated for ligament reconstruction fixation in the past decades, only few of them possess a combination of high mechanical properties, appropriate degradation rate, good biocompatibility, and osteogenic effect, thus limiting their clinical applications. A high-strength Zn-0.8Mn-0.4Mg alloy (i.e., Zn08Mn04Mg) with yield strength of 317 MPa was developed to address this issue. The alloy showed good biocompatibility and promising osteogenic effect in vitro. The degradation effects of Zn08Mn04Mg interference screws on the interface between soft tissue and bone were investigated in anterior cruciate ligament (ACL) reconstruction in rabbits. Compared to Ti6Al4V, the Zn alloy screws significantly accelerated the formation of new bone and further induced partial tendon mineralization, which promoted tendon-bone integration. The newly developed screws are believed to facilitate early joint function recovery and rehabilitation training and also avoid screw breakage during insertion, thereby contributing to an extensive clinical prospect.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Aleaciones/farmacología , Animales , Ligamento Cruzado Anterior/cirugía , Fenómenos Biomecánicos , Tornillos Óseos , Conejos , Zinc
18.
Orthop Surg ; 13(6): 1697-1706, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34351067

RESUMEN

The hip joint is the largest weight-bearing joint in the body and is surrounded by dense capsules and thick muscles. Hip arthroscopic techniques are suitable for the treatment of hip-related conditions. These minimally invasive techniques have rapidly developed in China since 2007. Moreover, they have been used in the treatment of gluteal muscle contracture, snapping hip syndrome, femoral acetabular impingement, acetabular labral injury, hip labral calcification, synovial chondroma, osteoid osteoma, synovitis, osteonecrosis of the femoral head, and developmental dysplasia of the hip. This technique has showed its advantage in the total debridement of lesions, precision treatment, and less trauma. However, we lack understanding of the overall development of arthroscopic techniques in China. This review illustrates the recent development of hip arthroscopic techniques in China and related research progress.


Asunto(s)
Artroscopía/métodos , Lesiones de la Cadera/diagnóstico , Lesiones de la Cadera/cirugía , Artropatías/diagnóstico , Artropatías/cirugía , China , Humanos
19.
Acta Biomater ; 131: 262-275, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34157451

RESUMEN

Decellularized extracellular matrix (dECM) hydrogels are being increasingly investigated for use in bio-inks for three-dimensional cell printing given their good cytocompatibility and biomimetic properties. The osmotic pressure and stiffness of bio-ink are important factors affecting the biological functions of printed cells. However, little attention has been given to the osmotic pressure and stiffness of the dECM bio-inks. Here, we compared three types of commonly used acidic solutions in the bio-fabrication of a tendon derived dECM bio-ink for 3D cell printing (0.5 M acetic acid, 0.1 M hydrochloric acid and 0.02 M hydrochloric acid). We found that low pH value of 0.1 M hydrochloric acid could accelerate the digestion process for dECM powders. This could lead to a much softer dECM hydrogel with storage modulus less than 100 Pa. This soft dECM hydrogel facilitated the spreading and proliferation of stem cells encapsulated within it. It also showed better tendon-inducing ability compared with two others much stiffer dECM hydrogels. However, this over-digested dECM hydrogel was more unstable as it could shrink with the culture time going on. For 0.5 M acetic acid made dECM bio-ink, the hyperosmotic state of the bio-ink led to much lower cellular viability rates. Postprocess (Dilution or dialysis) to tailor the osmotic pressure of hydrogels could be a necessary step before mixed with cells. Thus, kindly choosing the type and concentration of acidic solution is necessary for dECM bio-ink preparation. And a balance should be made between the digestion period, strength of acidic solution, as well as the size and concentration of the dECM powders. STATEMENT OF SIGNIFICANCE: The dECM bio-ink has been widely used in 3D cell printing for tissue engineering and organ modelling. In this study, we found that different types of acid have different digestion and dissolution status for the dECM materials. A much softer tendon derived dECM hydrogel with lower stiffness could facilitate the cellular spreading, proliferation and tendon differentiation. We also demonstrated that the osmotic pressure should be taken care of in the preparation of dECM bio-ink with 0.5 M acetic acid. Thus, kindly choosing the type and concentration of acidic solution is necessary for dECM bio-ink preparation.


Asunto(s)
Matriz Extracelular , Tinta , Hidrogeles/farmacología , Impresión Tridimensional , Tendones , Ingeniería de Tejidos , Andamios del Tejido
20.
Front Cell Dev Biol ; 9: 793820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957120

RESUMEN

Healing outcomes of meniscal repair are better in younger than in older. However, exact mechanisms underlying superior healing potential in younger remain unclear from a histological perspective. This study included 24 immature rabbits and 24 mature rabbits. Tears were created in the anterior horn of medial meniscus of right knee in each rabbit. Animals were sacrificed at 1, 3, 6, and 12 weeks postoperatively. We performed macroscopic and histological evaluations of post-meniscal repair specimens. Cells were counted within a region of interest to confirm cellularization at tear site in immature menisci. The width of cell death zone was measured to determine the region of cell death in mature menisci. Apoptosis was evaluated by TUNEL assay. Vascularization was assessed by CD31 immunofluorescence. The glycosaminoglycans and the types 1 and 2 collagen content was evaluated by calculating average optical density of corresponding histological specimens. Cartilage degeneration was also evaluated. Healing outcomes following untreated meniscal tears were superior in immature group. Recellularization with meniscus-like cell morphology was observed at tear edge in immature menisci. Superior recellularization was observed at meniscal sites close to joint capsule than at sites distant from the capsule. Recellularization did not occur at tear site in mature group; however, we observed gradual enlargement of cell death zone. Apoptosis was presented at 1, 3, 6, 12 weeks in immature and mature menisci after untreated meniscal tears. Vascularization was investigated along the tear edges in immature menisci. Glycosaminoglycans and type 2 collagen deposition were negatively affected in immature menisci. We observed glycosaminoglycan degradation in mature menisci and cartilage degeneration, specifically in immature cartilage of the femoral condyle. In conclusion, compared with mature rabbits, immature rabbits showed more robust healing response after untreated meniscal tears. Vascularization contributed to the recellularization after meniscal tears in immature menisci. Meniscal injury fundamentally alters extracellular matrix deposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA