Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(3): 459-469, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910206

RESUMEN

Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA. As a proof of concept, we took advantage of NZB/BALB heteroplasmic mice, which contain two mtDNA haplotypes, BALB and NZB, and selectively prevented their germline transmission using either mitochondria-targeted restriction endonucleases or TALENs. In addition, we successfully reduced human mutated mtDNA levels responsible for Leber's hereditary optic neuropathy (LHOND), and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in mammalian oocytes using mitochondria-targeted TALEN (mito-TALENs). Our approaches represent a potential therapeutic avenue for preventing the transgenerational transmission of human mitochondrial diseases caused by mutations in mtDNA. PAPERCLIP.


Asunto(s)
Marcación de Gen , Enfermedades Mitocondriales/genética , Animales , Fusión Celular , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Endonucleasas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NZB , Enfermedades Mitocondriales/prevención & control , Mutación , Oocitos/metabolismo
2.
Nat Chem Biol ; 20(9): 1123-1132, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38448734

RESUMEN

Metabolic efficiency profoundly influences organismal fitness. Nonphotosynthetic organisms, from yeast to mammals, derive usable energy primarily through glycolysis and respiration. Although respiration is more energy efficient, some cells favor glycolysis even when oxygen is available (aerobic glycolysis, Warburg effect). A leading explanation is that glycolysis is more efficient in terms of ATP production per unit mass of protein (that is, faster). Through quantitative flux analysis and proteomics, we find, however, that mitochondrial respiration is actually more proteome efficient than aerobic glycolysis. This is shown across yeast strains, T cells, cancer cells, and tissues and tumors in vivo. Instead of aerobic glycolysis being valuable for fast ATP production, it correlates with high glycolytic protein expression, which promotes hypoxic growth. Aerobic glycolytic yeasts do not excel at aerobic growth but outgrow respiratory cells during oxygen limitation. We accordingly propose that aerobic glycolysis emerges from cells maintaining a proteome conducive to both aerobic and hypoxic growth.


Asunto(s)
Adenosina Trifosfato , Glucólisis , Mitocondrias , Proteoma , Proteoma/metabolismo , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Humanos , Animales , Saccharomyces cerevisiae/metabolismo , Proteómica/métodos , Ratones , Aerobiosis
3.
Nature ; 584(7819): 69-74, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32512577

RESUMEN

Enzymes are increasingly explored for use in asymmetric synthesis1-3, but their applications are generally limited by the reactions available to naturally occurring enzymes. Recently, interest in photocatalysis4 has spurred the discovery of novel reactivity from known enzymes5. However, so far photoinduced enzymatic catalysis6 has not been used for the cross-coupling of two molecules. For example, the intermolecular coupling of alkenes with α-halo carbonyl compounds through a visible-light-induced radical hydroalkylation, which could provide access to important γ-chiral carbonyl compounds, has not yet been achieved by enzymes. The major challenges are the inherent poor photoreactivity of enzymes and the difficulty in achieving stereochemical control of the remote prochiral radical intermediate7. Here we report a visible-light-induced intermolecular radical hydroalkylation of terminal alkenes that does not occur naturally, catalysed by an 'ene' reductase using readily available α-halo carbonyl compounds as reactants. This method provides an efficient approach to the synthesis of various carbonyl compounds bearing a γ-stereocentre with excellent yields and enantioselectivities (up to 99 per cent yield with 99 per cent enantiomeric excess), which otherwise are difficult to access using chemocatalysis. Mechanistic studies suggest that the formation of the complex of the substrates (α-halo carbonyl compounds) and the 'ene' reductase triggers the enantioselective photoinduced radical reaction. Our work further expands the reactivity repertoire of biocatalytic, synthetically useful asymmetric transformations by the merger of photocatalysis and enzyme catalysis.


Asunto(s)
Alquenos/química , Alquenos/metabolismo , Hidrógeno/química , Hidrógeno/metabolismo , Luz , Oxidorreductasas/metabolismo , Procesos Fotoquímicos/efectos de la radiación , Alcoholes/química , Alcoholes/metabolismo , Alquilación/efectos de la radiación , Biocatálisis/efectos de la radiación , Biomasa , Carboxiliasas/metabolismo , Flavinas/metabolismo , Modelos Químicos , Modelos Moleculares , Estereoisomerismo
4.
Nucleic Acids Res ; 52(6): e30, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346683

RESUMEN

The CRISPR/Cas system has emerged as a powerful tool for genome editing in metabolic engineering and human gene therapy. However, locating the optimal site on the chromosome to integrate heterologous genes using the CRISPR/Cas system remains an open question. Selecting a suitable site for gene integration involves considering multiple complex criteria, including factors related to CRISPR/Cas-mediated integration, genetic stability, and gene expression. Consequently, identifying such sites on specific or different chromosomal locations typically requires extensive characterization efforts. To address these challenges, we have developed CRISPR-COPIES, a COmputational Pipeline for the Identification of CRISPR/Cas-facilitated intEgration Sites. This tool leverages ScaNN, a state-of-the-art model on the embedding-based nearest neighbor search for fast and accurate off-target search, and can identify genome-wide intergenic sites for most bacterial and fungal genomes within minutes. As a proof of concept, we utilized CRISPR-COPIES to characterize neutral integration sites in three diverse species: Saccharomyces cerevisiae, Cupriavidus necator, and HEK293T cells. In addition, we developed a user-friendly web interface for CRISPR-COPIES (https://biofoundry.web.illinois.edu/copies/). We anticipate that CRISPR-COPIES will serve as a valuable tool for targeted DNA integration and aid in the characterization of synthetic biology toolkits, enable rapid strain construction to produce valuable biochemicals, and support human gene and cell therapy applications.


Asunto(s)
Sistemas CRISPR-Cas , Biología Computacional , Simulación por Computador , Edición Génica , Humanos , Sistemas CRISPR-Cas/genética , Células HEK293 , Saccharomyces cerevisiae/genética , Biología Computacional/métodos , Betaproteobacteria/genética , Interfaz Usuario-Computador
5.
Chem Rev ; 123(9): 5521-5570, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36584306

RESUMEN

Metabolic engineering aims to improve the production of economically valuable molecules through the genetic manipulation of microbial metabolism. While the discipline is a little over 30 years old, advancements in metabolic engineering have given way to industrial-level molecule production benefitting multiple industries such as chemical, agriculture, food, pharmaceutical, and energy industries. This review describes the design, build, test, and learn steps necessary for leading a successful metabolic engineering campaign. Moreover, we highlight major applications of metabolic engineering, including synthesizing chemicals and fuels, broadening substrate utilization, and improving host robustness with a focus on specific case studies. Finally, we conclude with a discussion on perspectives and future challenges related to metabolic engineering.


Asunto(s)
Industrias , Ingeniería Metabólica
6.
J Am Chem Soc ; 146(15): 10716-10722, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579164

RESUMEN

Chiral alkyl amines are common structural motifs in pharmaceuticals, natural products, synthetic intermediates, and bioactive molecules. An attractive method to prepare these molecules is the asymmetric radical hydroamination; however, this approach has not been explored with dialkyl amine-derived nitrogen-centered radicals since designing a catalytic system to generate the aminium radical cation, to suppress deleterious side reactions such as α-deprotonation and H atom abstraction, and to facilitate enantioselective hydrogen atom transfer is a formidable task. Herein, we describe the application of photoenzymatic catalysis to generate and harness the aminium radical cation for asymmetric intermolecular hydroamination. In this reaction, the flavin-dependent ene-reductase photocatalytically generates the aminium radical cation from the corresponding hydroxylamine and catalyzes the asymmetric intermolecular hydroamination to furnish the enantioenriched tertiary amine, whereby enantioinduction occurs through enzyme-mediated hydrogen atom transfer. This work highlights the use of photoenzymatic catalysis to generate and control highly reactive radical intermediates for asymmetric synthesis, addressing a long-standing challenge in chemical synthesis.

7.
J Am Chem Soc ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283600

RESUMEN

Glycyl radical enzymes (GREs) catalyze mechanistically diverse radical-mediated reactions, playing important roles in the metabolism of anaerobic bacteria. The model bacterium Escherichia coli MG1655 contains two GREs of unknown function, YbiW and PflD, which are widespread among human intestinal bacteria. Here, we report that YbiW and PflD catalyze ring-opening C-O cleavage of 1,5-anhydroglucitol-6-phosphate (AG6P) and 1,5-anhydromannitol-6-phosphate (AM6P), respectively. The product of both enzymes, 1-deoxy-fructose-6-phosphate (DF6P), is then cleaved by the aldolases FsaA or FsaB to form glyceraldehyde-3-phosphate (G3P) and hydroxyacetone (HA), which are then reduced by the NADH-dependent dehydrogenase GldA to form 1,2-propanediol (1,2-PDO). Crystal structures of YbiW and PflD in complex with their substrates provided insights into the mechanism of radical-mediated C-O cleavage. This "anhydroglycolysis" pathway enables anaerobic growth of E. coli on 1,5-anhydroglucitol (AG) and 1,5-anhydromannitol (AM), and we probe the feasibility of harnessing this pathway for the production of 1,2-PDO, a highly demanded chiral chemical feedstock, from inexpensive starch. Discovery of the anhydroglycolysis pathway expands the known catalytic repertoire of GREs, clarifies the hitherto unknown physiological functions of the well-studied enzymes FsaA, FsaB, and GldA, and demonstrates how enzyme discovery efforts can cast light on prevalent yet overlooked metabolites in the microbiome.

8.
Anal Chem ; 96(15): 6037-6044, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38560885

RESUMEN

Dopamine (DA), an essential neurotransmitter, is closely associated with various neurological disorders, whose real-time dynamic monitoring is significant for evaluating the physiological activities of neurons. Electrochemical sensing methods are commonly used to determine DA, but they mostly rely on the redox reaction of its o-phenolic hydroxyl group, which makes it difficult to distinguish it from substances with this group. Here, we design a biomimetic nanozyme inspired by the coordination structure of the copper-based active site of dopamine ß-hydroxylase, which was successfully synthesized via a urea-mediated MOF pyrolysis reconstruction strategy. Experimental studies and theoretical calculations revealed that the nanozyme with Cu-N3 coordination could hydroxylate the carbon atom of the DA ß-site at a suitable potential and that the active sites of this Cu-N3 structure have the lowest binding energy for the DA ß-site. With this property, the new oxidation peak achieves the specific detection of DA rather than the traditional electrochemical signal of o-phenol hydroxyl redox, which would effectively differentiate it from neurotransmitters, such as norepinephrine and epinephrine. The sensor exhibited good monitoring capability in DA concentrations from 0.05 to 16.7 µM, and its limit of detection was 0.03 µM. Finally, the sensor enables the monitoring of DA released from living cells and can be used to quantitatively analyze the effect of polystyrene microplastics on the amount of DA released. The research provides a method for highly specific monitoring of DA and technical support for initial screening for neurocytotoxicity of pollutants.


Asunto(s)
Dopamina , Oxigenasas de Función Mixta , Dopamina/química , Fenol , Biomimética , Cobre , Plásticos , Pirólisis , Electrodos , Neurotransmisores , Técnicas Electroquímicas/métodos
9.
BMC Plant Biol ; 24(1): 51, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38225581

RESUMEN

BACKGROUND: Caffeic acid O-methyltransferase (COMT) is a key enzyme that regulates melatonin synthesis and is involved in regulating the growth, development, and response to abiotic stress in plants. Tea plant is a popular beverage consumed worldwide, has been used for centuries for its medicinal properties, including its ability to reduce inflammation, improve digestion, and boost immune function. By analyzing genetic variation within the COMT family, while helping tea plants resist adversity, it is also possible to gain a deeper understanding of how different tea varieties produce and metabolize catechins, then be used to develop new tea cultivars with desired flavor profiles and health benefits. RESULTS: In this study, a total of 25 CsCOMT genes were identified based on the high-quality tea (Camellia sinensis) plant genome database. Phylogenetic tree analysis of CsCOMTs with COMTs from other species showed that COMTs divided into four subfamilies (Class I, II, III, IV), and CsCOMTs was distributed in Class I, Class II, Class III. CsCOMTs not only undergoes large-scale gene recombination in pairs internally in tea plant, but also shares 2 and 7 collinear genes with Arabidopsis thaliana and poplar (Populus trichocarpa), respectively. The promoter region of CsCOMTs was found to be rich in cis-acting elements associated with plant growth and stress response. By analyzing the previously transcriptome data, it was found that some members of CsCOMT family exhibited significant tissue-specific expression and differential expression under different stress treatments. Subsequently, we selected six CsCOMTs to further validated their expression levels in different tissues organ using qRT-PCR. In addition, we silenced the CsCOMT19 through virus-induced gene silencing (VIGS) method and found that CsCOMT19 positively regulates the synthesis of melatonin in tea plant. CONCLUSION: These results will contribute to the understanding the functions of CsCOMT gene family and provide valuable information for further research on the role of CsCOMT genes in regulating tea plant growth, development, and response to abiotic stress.


Asunto(s)
Camellia sinensis , Melatonina , Metiltransferasas , Camellia sinensis/fisiología , Melatonina/genética , Filogenia , , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Chembiochem ; 25(12): e202400212, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38648232

RESUMEN

The ß-hemolytic factor streptolysin S (SLS) is an important linear azol(in)e-containing peptide (LAP) that contributes significantly to the virulence of Streptococcus pyogenes. Despite its discovery 85 years ago, SLS has evaded structural characterizing owing to its notoriously problematic physicochemical properties. Here, we report the discovery and characterization of a structurally analogous hemolytic peptide from Enterococcus caccae, termed enterolysin S (ELS). Through heterologous expression, site-directed mutagenesis, chemoselective modification, and high-resolution mass spectrometry, we found that ELS contains an intriguing contiguous octathiazole moiety. The discovery of ELS expands our knowledge of hemolytic LAPs by adding a new member to this virulence-promoting family of modified peptides.


Asunto(s)
Enterococcus , Enterococcus/metabolismo , Tiazoles/química , Tiazoles/metabolismo , Péptidos/química , Péptidos/metabolismo , Hemólisis/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Secuencia de Aminoácidos
11.
Plant Biotechnol J ; 22(1): 48-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37697445

RESUMEN

Long noncoding RNAs (lncRNAs) play an important role in abiotic stress tolerance. However, their function in conferring abiotic stress tolerance is still unclear. Herein, we characterized the function of a salt-responsive nuclear lncRNA (BplncSIR1) from Betula platyphylla (birch). Birch plants overexpressing and knocking out for BplncSIR1 were generated. BplncSIR1 was found to improve salt tolerance by inducing antioxidant activity and stomatal closure, and also accelerate plant growth. Chromatin isolation by RNA purification (ChIRP) combined with RNA sequencing indicated that BplncSIR1 binds to the promoter of BpNAC2 (encoding NAC domain-containing protein 2) to activate its expression. Plants overexpressing and knocking out for BpNAC2 were generated. Consistent with that of BplncSIR1, overexpression of BpNAC2 also accelerated plant growth and conferred salt tolerance. In addition, BpNAC2 binds to different cis-acting elements, such as G-box and 'CCAAT' sequences, to regulate the genes involved in salt tolerance, resulting in reduced ROS accumulation and decreased water loss rate by stomatal closure. Taken together, BplncSIR1 serves as the regulator of BpNAC2 to induce its expression in response to salt stress, and activated BpNAC2 accelerates plant growth and improves salt tolerance. Therefore, BplncSIR1 might be a candidate gene for molecular breeding to cultivate plants with both a high growth rate and improved salt tolerance.


Asunto(s)
ARN Largo no Codificante , Tolerancia a la Sal , Tolerancia a la Sal/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Betula/genética , Betula/metabolismo , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
12.
Metab Eng ; 81: 70-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040110

RESUMEN

The remarkable metabolic diversity observed in nature has provided a foundation for sustainable production of a wide array of valuable molecules. However, transferring the biosynthetic pathway to the desired host often runs into inherent failures that arise from intermediate accumulation and reduced flux resulting from competing pathways within the host cell. Moreover, the conventional trial and error methods utilized in pathway optimization struggle to fully grasp the intricacies of installed pathways, leading to time-consuming and labor-intensive experiments, ultimately resulting in suboptimal yields. Considering these obstacles, there is a pressing need to explore the enzyme expression landscape and identify the optimal pathway configuration for enhanced production of molecules. This review delves into recent advancements in pathway engineering, with a focus on multiplex experimentation and machine learning techniques. These approaches play a pivotal role in overcoming the limitations of traditional methods, enabling exploration of a broader design space and increasing the likelihood of discovering optimal pathway configurations for enhanced production of molecules. We discuss several tools and strategies for pathway design, construction, and optimization for sustainable and cost-effective microbial production of molecules ranging from bulk to fine chemicals. We also highlight major successes in academia and industry through compelling case studies.


Asunto(s)
Vías Biosintéticas , Aprendizaje Automático , Ingeniería Metabólica/métodos
13.
Metab Eng ; 82: 100-109, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325640

RESUMEN

Odd-numbered fatty acids (FAs) have been widely used in nutrition, agriculture, and chemical industries. Recently, some studies showed that they could be produced from bacteria or yeast, but the products are almost exclusively odd-numbered long-chain FAs. Here we report the design and construction of two biosynthetic pathways in Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids (OMFAs) via ricinoleic acid and 10-hydroxystearic acid, respectively. The production of OMFAs was enabled by introducing a hydroxy fatty acid cleavage pathway, including an alcohol dehydrogenase from Micrococcus luteus, a Baeyer-Villiger monooxygenase from Pseudomonas putida, and a lipase from Pseudomonas fluorescens. These OMFA biosynthetic pathways were optimized by eliminating the rate-limiting step, generating heptanoic acid, 11-hydroxyundec-9-enoic acid, nonanoic acid, and 9-hydroxynonanoic acid at 7.83 mg/L, 9.68 mg/L, 9.43 mg/L and 13.48 mg/L, respectively. This work demonstrates the biological production of OMFAs in a sustainable manner in S. cerevisiae.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácidos Grasos , Oxigenasas de Función Mixta/metabolismo , Alcohol Deshidrogenasa/metabolismo
14.
Biotechnol Bioeng ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285630

RESUMEN

In eukaryotes, gene expression typically requires individual promoter and terminator for each gene, making the expression of multiple genes tedious and sometimes too difficult to handle. This is especially true for underdeveloped nonmodel organisms with few genetic engineering tools and genetic elements such as Rhodosporidium toruloides. In contrast, polycistronic expression offers advantages such as smaller size and ease of cloning. Here we report the development of a multigene expression system using 2A peptides in R. toruloides. First, twenty-two 2A peptides were evaluated for their cleavage efficiencies, which ranged from 33.65% to 93.32%. Subsequently, the 2A peptide of ERBV-1 with the highest efficiency was selected to enable simultaneous expression of four proteins. In addition, we demonstrated the optimization of the α-linolenic acid biosynthetic pathway using ERBV-1 peptide mediated polycistronic expression, which increased the α-linolenic acid production by 104.72%. These results suggest that using ERBV-1 peptide is an efficient strategy for multigene expression in R. toruloides.

15.
Mol Pharm ; 21(1): 152-163, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113058

RESUMEN

Given that precise/rapid intraoperative tumor margin identification is still challenging, novel fluorescent probes HY and HYM, based on acidic tumor microenvironment (TME) activation and organic anion transporting polypeptide (OATPs)-mediated selective uptake, were constructed and synthesized. Both of them possessed acidic pH-activatable and reversible fluorescence as well as large Stokes shift. Compared with HY, HYM had a higher (over 9-fold) enhancement in fluorescence with pH ranging from 7.6 to 4.0, and the fluorescence quantum yield of HYM (ΦF = 0.49) at pH = 4.0 was 8-fold stronger than that (ΦF = 0.06) at pH = 7.4. Mechanism research demonstrated that acidic TME-induced protonation of the pyridine N atom on ß-carbolines accounted for the pH-sensitive fluorescence by influencing the intramolecular charge transfer (ICT) effect. Furthermore, HYM selectively lit up cancer cells and tumor tissues not only by "off-on" fluorescence but also by OATPs (overexpressed on cancer cells)-mediated cancer cellular internalization, offering dual tumor selectivity for precise visualization of tumor mass and intraoperative guidance upon in situ spraying. Most importantly, HYM enabled rapid and high-contrast (tumor-to-normal tissue ratios > 6) human tumor margin identification in clinical tumor tissues by simple spraying within 6 min, being promising for aiding in clinical surgical resection.


Asunto(s)
Colorantes Fluorescentes , Neoplasias , Humanos , Colorantes Fluorescentes/química , Neoplasias/diagnóstico por imagen , Carbolinas , Fluorescencia , Microambiente Tumoral
16.
Microb Cell Fact ; 23(1): 141, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760782

RESUMEN

BACKGROUND: The oleaginous yeast Rhodotorula toruloides is a promising chassis organism for the biomanufacturing of value-added bioproducts. It can accumulate lipids at a high fraction of biomass. However, metabolic engineering efforts in this organism have progressed at a slower pace than those in more extensively studied yeasts. Few studies have investigated the lipid accumulation phenotype exhibited by R. toruloides under nitrogen limitation conditions. Consequently, there have been only a few studies exploiting the lipid metabolism for higher product titers. RESULTS: We performed a multi-omic investigation of the lipid accumulation phenotype under nitrogen limitation. Specifically, we performed comparative transcriptomic and lipidomic analysis of the oleaginous yeast under nitrogen-sufficient and nitrogen deficient conditions. Clustering analysis of transcriptomic data was used to identify the growth phase where nitrogen-deficient cultures diverged from the baseline conditions. Independently, lipidomic data was used to identify that lipid fractions shifted from mostly phospholipids to mostly storage lipids under the nitrogen-deficient phenotype. Through an integrative lens of transcriptomic and lipidomic analysis, we discovered that R. toruloides undergoes lipid remodeling during nitrogen limitation, wherein the pool of phospholipids gets remodeled to mostly storage lipids. We identify specific mRNAs and pathways that are strongly correlated with an increase in lipid levels, thus identifying putative targets for engineering greater lipid accumulation in R. toruloides. One surprising pathway identified was related to inositol phosphate metabolism, suggesting further inquiry into its role in lipid accumulation. CONCLUSIONS: Integrative analysis identified the specific biosynthetic pathways that are differentially regulated during lipid remodeling. This insight into the mechanisms of lipid accumulation can lead to the success of future metabolic engineering strategies for overproduction of oleochemicals.


Asunto(s)
Metabolismo de los Lípidos , Nitrógeno , Rhodotorula , Rhodotorula/metabolismo , Rhodotorula/genética , Nitrógeno/metabolismo , Transcriptoma , Ingeniería Metabólica/métodos , Fosfolípidos/metabolismo , Lipidómica , Lípidos/biosíntesis
17.
Microb Cell Fact ; 23(1): 149, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790014

RESUMEN

BACKGROUND: Streptomyces is renowned for its robust biosynthetic capacity in producing medically relevant natural products. However, the majority of natural products biosynthetic gene clusters (BGCs) either yield low amounts of natural products or remain cryptic under standard laboratory conditions. Various heterologous production hosts have been engineered to address these challenges, and yet the successful activation of BGCs has still been limited. In our search for a valuable addition to the heterologous host panel, we identified the strain Streptomyces sp. A4420, which exhibited rapid initial growth and a high metabolic capacity, prompting further exploration of its potential. RESULTS: We engineered a polyketide-focused chassis strain based on Streptomyces sp. A4420 (CH strain) by deleting 9 native polyketide BGCs. The resulting metabolically simplified organism exhibited consistent sporulation and growth, surpassing the performance of most existing Streptomyces based chassis strains in standard liquid growth media. Four distinct polyketide BGCs were chosen and expressed in various heterologous hosts, including the Streptomyces sp. A4420 wild-type and CH strains, alongside Streptomyces coelicolor M1152, Streptomyces lividans TK24, Streptomyces albus J1074, and Streptomyces venezuelae NRRL B-65442. Remarkably, only the Streptomyces sp. A4420 CH strain demonstrated the capability to produce all metabolites under every condition outperforming its parental strain and other tested organisms. To enhance visualization and comparison of the tested strains, we developed a matrix-like analysis involving 15 parameters. This comprehensive analysis unequivocally illustrated the significant potential of the new strain to become a popular heterologous host. CONCLUSION: Our engineered Streptomyces sp. A4420 CH strain exhibits promising attributes for the heterologous expression of natural products with a focus on polyketides, offering an alternative choice in the arsenal of heterologous production strains. As genomics and cloning strategies progress, establishment of a diverse panel of heterologous production hosts will be crucial for expediting the discovery and production of medically relevant natural products derived from Streptomyces.


Asunto(s)
Productos Biológicos , Ingeniería Metabólica , Familia de Multigenes , Policétidos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Productos Biológicos/metabolismo , Policétidos/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Vías Biosintéticas/genética
18.
BMC Neurol ; 24(1): 27, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218780

RESUMEN

BACKGROUND: There are very limited reports on anti-metabolic glutamate receptor5 (mGluR5) encephalitis, especially lacking of pediatric research. The disease was mostly accompanied by tumors, mainly Hodgkin's lymphoma. No reports of other tumors, such as gangliocytoma have been reported to associate with anti-mGluR5 encephalitis so far. CASE PRESENTATION AND LITERATURE REVIEWS: We reported a case of a 12-year-old boy with anti-mGluR5 encephalitis complicated with gangliocytoma. The patient suffered from mental disorders including auditory hallucination, and sleep disorders. His cranial magnetic resonance imaging (MRI) showed an abnormality in the right insular lobe. Autoimmune encephalitis antibodies testing was positive for mGluR5 IgG antibody both in cerebrospinal fluid and serum (1:3.2, 1:100 respectively). Abdominal CT indicated a mass in left retroperitoneal confirmed with gangliocytoma via pathology. The patient underwent resection of gangliocytoma. After first-line immunotherapy (glucocorticoid, gamma globulin), his condition was improved. Furthermore, we provide a summary of 6 pediatric cases of Anti-mGluR5 encephalitis. Most of them complicated with Hodgkin's lymphoma, except the case currently reported comorbid with gangliocytoma. The curative effect is satisfactory. CONCLUSIONS: We report the first patient with anti-mGlur5 encephalitis complicated with gangliocytoma. It suggests that in addition to paying attention to the common lymphoma associated with anti-mGlur5 encephalitis, we should also screen the possibility of other tumors for early detection of the cause, active treatment and prevention of recurrence.


Asunto(s)
Encefalitis , Ganglioneuroma , Enfermedad de Hodgkin , Masculino , Humanos , Niño , Enfermedad de Hodgkin/complicaciones , Ganglioneuroma/complicaciones , Encefalitis/complicaciones , Encefalitis/diagnóstico por imagen , Encefalitis/terapia , Inmunoglobulina G , Receptores de Glutamato , Autoanticuerpos
19.
Exp Lung Res ; 50(1): 25-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419581

RESUMEN

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Lesión Pulmonar , Animales , Humanos , Recién Nacido , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Hiperoxia/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , ARN Mensajero/metabolismo
20.
Macromol Rapid Commun ; 45(3): e2300538, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37877956

RESUMEN

The continuous advancement of luminescent materials has placed increasingly stringent requirements on dynamic color-tunable ultralong room-temperature phosphorescence (URTP) materials that can respond to external stimuli. Nevertheless, endowing URTP materials with stimuli-response-induced dynamic color tuning is a challenging task. This study introduces a carbon dots (CDs)@LiCl-polyacrylamide (PAM) polymer system that switches from URTP to fluorescence under humidity stimuli, accompanied by a transition from rigidity to flexibility. The obtained rigid CDs@LiCl-PAM exhibits ultralong green phosphorescence with a lifetime of 560 ms in the initial state. After absorbing moisture, it becomes flexible and its phosphorescence switches off. Moreover, the emission of the CDs@LiCl-PAM film depends on the excitation wavelength. This property can potentially used in multicolored luminescence applications and displays. Moreover, multicolor luminescent patterns can be constructed in situ using the water-absorption ability of the obtained thin film and the Förster resonance energy-transfer strategy. The proposed strategy is expected to promote the interdisciplinary development of intelligent information encryption, anti-counterfeiting, and smart flexible display materials.


Asunto(s)
Resinas Acrílicas , Materiales Inteligentes , Humedad , Temperatura , Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA