Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.340
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(1): 258-268.e12, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32860739

RESUMEN

Plasmodium species, the causative agent of malaria, rely on glucose for energy supply during blood stage. Inhibition of glucose uptake thus represents a potential strategy for the development of antimalarial drugs. Here, we present the crystal structures of PfHT1, the sole hexose transporter in the genome of Plasmodium species, at resolutions of 2.6 Å in complex with D-glucose and 3.7 Å with a moderately selective inhibitor, C3361. Although both structures exhibit occluded conformations, binding of C3361 induces marked rearrangements that result in an additional pocket. This inhibitor-binding-induced pocket presents an opportunity for the rational design of PfHT1-specific inhibitors. Among our designed C3361 derivatives, several exhibited improved inhibition of PfHT1 and cellular potency against P. falciparum, with excellent selectivity to human GLUT1. These findings serve as a proof of concept for the development of the next-generation antimalarial chemotherapeutics by simultaneously targeting the orthosteric and allosteric sites of PfHT1.


Asunto(s)
Proteínas de Transporte de Monosacáridos/ultraestructura , Plasmodium falciparum/metabolismo , Plasmodium falciparum/ultraestructura , Proteínas Protozoarias/ultraestructura , Secuencia de Aminoácidos , Animales , Antimaláricos , Transporte Biológico , Glucosa/metabolismo , Humanos , Malaria , Malaria Falciparum/parasitología , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/metabolismo , Parásitos , Plasmodium falciparum/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Azúcares/metabolismo
2.
Plant Physiol ; 194(2): 1139-1165, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815242

RESUMEN

Low light conditions severely suppress anthocyanin synthesis in fruit skins, leading to compromised fruit quality in eggplant (Solanum melongena L.) production. In this study, we found that exogenous methyl-jasmonate (MeJA) application can effectively rescue the poor coloration of the eggplant pericarp under low light conditions. However, the regulatory relationship between jasmonate and light signaling for regulating anthocyanin synthesis remains unclear. Here, we identified a JA response factor, SmMYB5, as an anthocyanin positive regulator by applying RNA-sequencing and characterization of transgenic plants. Firstly, we resolved that SmMYB5 can interact with TRANSPARENT TESTA8 (SmTT8), an anthocyanin-promoted BASIC HELIX-LOOP-HELIX (bHLH) transcription factor, to form the SmMYB5-SmTT8 complex and activate CHALCONE SYNTHASE (SmCHS), FLAVANONE-3-HYDROXYLASE (SmF3H), and ANTHOCYANIN SYNTHASE (SmANS) promoters by direct binding. Secondly, we revealed that JA signaling repressors JASMONATE ZIM DOMAIN5 (SmJAZ5) and SmJAZ10 can interfere with the stability and transcriptional activity of SmMYB5-SmTT8 by interacting with SmMYB5. JA can partially rescue the transcriptional activation of SmF3H and SmANS promoters by inducing SmJAZ5/10 degradation. Thirdly, we demonstrated that the protein abundance of SmMYB5 is regulated by light. CONSTITUTIVELY PHOTOMORPHOGENIC1 (SmCOP1) interacts with SmMYB5 to trigger SmMYB5 degradation via the 26S proteasome pathway. Finally, we delineated a light-dependent JA-SmMYB5 signaling pathway that promotes anthocyanin synthesis in eggplant fruit skins. These results provide insights into the mechanism of the integration of JA and light signals in regulating secondary metabolite synthesis in plants.


Asunto(s)
Solanum melongena , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismo , Antocianinas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
PLoS Biol ; 20(6): e3001659, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35658004

RESUMEN

In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activity-dependent bulk endocytosis (ADBE). Alix (ALG-2-interacting protein X/PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrin-independent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons, we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ADBE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix leads to abnormal synaptic recovery during physiological or pathological repeated stimulations.


Asunto(s)
Endocitosis , Sinapsis , Animales , Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Ratones , Neuronas/fisiología , Sinapsis/metabolismo
4.
Exp Cell Res ; 434(2): 113873, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38092346

RESUMEN

Neurogenic pulmonary edema secondary to acute brain injury (ABI) is a common and fatal disease condition. However, the pathophysiology of brain-lung interactions is incompletely understood. This study aims to investigate whether sympathetic activation-mediated high fluid shear stress after ABI would damage pulmonary endothelial glycocalyx thus leading to increased pulmonary capillary permeability. The tricuspid annular plane systolic excursion (TAPSE) was detected in a rat model of controlled cortical impact (CCI) and CCI + transection of the cervical sympathetic trunk (TCST). Changes in pulmonary capillary permeability were assessed by analyzing the Evans blue, measuring the dry/wet weight ratio of the lungs and altering protein levels in the bronchoalveolar lavage fluid (BALF). The parallel-plate flow chamber system was used to simulate the fluid shear stress in vitro. Western blotting and immunofluorescence staining were used to determine the expression levels of hyaluronan-binding protein (CEMIP), syndecan-1 and tight junction proteins (TJPs, including claudin-5 and occludin). TCST could restrain cardiac overdrive and sympathetic activation in a rat model of CCI. Compared to the CCI group, the CCI + TCST group showed a reduction of CEMPI (which degrades hyaluronic acid), along with an increase of syndecan-1 and TJPs. CCI + TCST group presented decreasing pulmonary capillary permeability. In vitro, high shear stress (HSS) increased the expression of CEMIP and reduced syndecan-1 and TJPs, which was coordinated with the results in vivo. Our findings show that sympathetic activation-mediated high fluid shear stress after ABI would damage pulmonary endothelial glycocalyx thus leading to increased pulmonary capillary permeability.


Asunto(s)
Lesiones Encefálicas , Sindecano-1 , Ratas , Animales , Sindecano-1/metabolismo , Glicocálix/metabolismo , Permeabilidad Capilar , Pulmón/metabolismo , Lesiones Encefálicas/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(39): e2202157119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122209

RESUMEN

CTNNB1, encoding ß-catenin protein, is the most frequently altered proto-oncogene in hepatic neoplasms. In this study, we studied the significance and pathological mechanism of CTNNB1 gain-of-function mutations in hepatocarcinogenesis. Activated ß-catenin not only triggered hepatic tumorigenesis but also exacerbated Tp53 deletion or hepatitis B virus infection-mediated liver cancer development in mouse models. Using untargeted metabolomic profiling, we identified boosted de novo pyrimidine synthesis as the major metabolic aberration in ß-catenin mutant cell lines and livers. Oncogenic ß-catenin transcriptionally stimulated AKT2, which then phosphorylated the rate-limiting de novo pyrimidine synthesis enzyme CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase) on S1406 and S1859 to potentiate nucleotide synthesis. Moreover, inhibition of ß-catenin/AKT2-stimulated pyrimidine synthesis axis preferentially repressed ß-catenin mutant cell proliferation and tumor formation. Therefore, ß-catenin active mutations are oncogenic in various preclinical liver cancer models. Stimulation of ß-catenin/AKT2/CAD signaling cascade on pyrimidine synthesis is an essential and druggable vulnerability for ß-catenin mutant liver cancer.


Asunto(s)
Neoplasias Hepáticas , Pirimidinas , beta Catenina , Animales , Ácido Aspártico , Carcinogénesis , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Sistemas de Liberación de Medicamentos , Ligasas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatología , Ratones , Nucleótidos , Fosfatos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/biosíntesis , beta Catenina/metabolismo
6.
Nano Lett ; 24(14): 4202-4208, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38547140

RESUMEN

Surface effects of low-surface-tension contaminants accumulating at the evaporation surface easily induce wetting in membrane distillation, especially in hypersaline scenarios. Herein, we propose a novel strategy to eliminate the surface effect and redistribute contaminants at the evaporation interface simply by incorporating a layer of hydrogel. The as-fabricated composite membrane exhibits remarkable stability, even when exposed to solution with salt concentration of 5 M and surfactant concentration of 8 mM. Breakthrough pressure of the membrane reaches 20 bar in the presence of surfactants, surpassing commercial hydrophobic membranes by one to two magnitudes. Density functional theory and molecular dynamics simulations reveal the important role of the hydrogel-surfactant interaction in suppressing the surface effect. As a proof of concept, we demonstrate the membrane in stably processing synthetic wastewater containing 144 mg L-1 surfactants, 1 g L-1 mineral oils, and 192 g L-1 NaCl, showing its potential in addressing challenges of hypersaline water treatment.

7.
Infect Immun ; 92(1): e0022923, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38099659

RESUMEN

Legionella is a common intracellular parasitic bacterium that infects humans via the respiratory tract, causing Legionnaires' disease, with fever and pneumonia as the main symptoms. The emergence of highly virulent and azithromycin-resistant Legionella pneumophila is a major challenge in clinical anti-infective therapy. The CRISPR-Cas acquired immune system provides immune defense against foreign nucleic acids and regulates strain biological functions. However, the distribution of the CRISPR-Cas system in Legionella and how it regulates gene expression in L. pneumophila remain unclear. Herein, we assessed 915 Legionella whole-genome sequences to determine the distribution characteristics of the CRISPR-Cas system and constructed gene deletion mutants to explore the regulation of the system based on growth ability in vitro, antibiotic sensitivity, and intracellular proliferation of L. pneumophila. The CRISPR-Cas system in Legionella was predominantly Type II-B and was mainly concentrated in the genome of L. pneumophila ST1 strains. The Type II-B CRISPR-Cas system showed no effect on the strain's growth ability in vitro but significantly reduced resistance to azithromycin and decreased proliferation ability due to regulation of the lpeAB efflux pump and the Dot/Icm type IV secretion system. Thus, the Type II-B CRISPR-Cas system plays a crucial role in regulating the virulence of L. pneumophila. This expands our understanding of drug resistance and pathogenicity in Legionella, provides a scientific basis for the prevention of Legionnaires' disease outbreaks and the rational use of clinical drugs, and facilitates effective treatment of Legionnaires' disease.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Humanos , Enfermedad de los Legionarios/microbiología , Azitromicina/farmacología , Sistemas CRISPR-Cas , Legionella pneumophila/genética
8.
Biochem Biophys Res Commun ; 715: 149999, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678787

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.


Asunto(s)
Manosa , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico , Serina-Treonina Quinasas TOR , Animales , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Manosa/farmacología , Manosa/metabolismo , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
9.
Biol Reprod ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582608

RESUMEN

The aim of this study was to evaluate the role of angiotensin-converting enzyme 1 (ACE1) in H2O2-induced trophoblast cell injury and the potential molecular mechanisms. Oxidative stress was modeled by exposing HTR-8/SVneo cells to 200 µM H2O2. Western blot and real-time quantitative PCR methods were used to detect protein and mRNA expression level of ACE1 in chorionic villus tissue and trophoblast HTR-8/SVneo cell. Inhibition of ACE1 expression was achieved by transfection with small interfering RNA. Then flow cytometry, Cell Counting Kit-8, and Transwell assay was used to assess apoptosis, viability, and migration ability of the cells. Reactive oxygen species (ROS) were detected by fluorescent probes, and malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) activities were determined by corresponding detection kits. Angiotensin-converting enzyme 1 expression was upregulated in chorionic villus tissue of patients with missed abortion (MA) compared with individuals with normal early pregnancy abortion. H2O2 induced elevated ACE1 expression in HTR-8/SVneo cells, promoted apoptosis, and inhibited cell viability and migration. Knockdown of ACE1 expression inhibited H2O2-induced effects to enhance cell viability and migration and suppress apoptosis. Additionally, H2O2 stimulation caused increased levels of ROS and MDA and decreased SOD and GSH activity in the cells, whereas knockdown of ACE1 expression led to opposite changes of these oxidative stress indicators. Moreover, knockdown of ACE1 attenuated the inhibitory effect of H2O2 on the Nrf2/HO-1 pathway. Angiotensin-converting enzyme 1 was associated with MA, and it promoted H2O2-induced injury of trophoblast cells through inhibiting the Nrf2 pathway. Therefore, ACE1 may serve as a potential therapeutic target for MA.

10.
J Transl Med ; 22(1): 254, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459588

RESUMEN

BACKGROUND: Although hepatitis B virus (HBV) infection is a major risk factor for hepatic cancer, the majority of HBV carriers do not develop this lethal disease. Additional molecular alterations are thus implicated in the process of liver tumorigenesis. Since phosphatase and tensin homolog (PTEN) is decreased in approximately half of liver cancers, we investigated the significance of PTEN deficiency in HBV-related hepatocarcinogenesis. METHODS: HBV-positive human liver cancer tissues were checked for PTEN expression. Transgenic HBV, Alb-Cre and Ptenfl/fl mice were inter-crossed to generate WT, HBV, Pten-/- and HBV; Pten-/- mice. Immunoblotting, histological analysis and qRT-PCR were used to study these livers. Gp73-/- mice were then mated with HBV; Pten-/- mice to illustrate the role of hepatic tumor biomarker golgi membrane protein 73 (GP73)/ golgi membrane protein 1 (GOLM1) in hepatic oncogenesis. RESULTS: Pten deletion and HBV transgene synergistically aggravated liver injury, inflammation, fibrosis and development of mixed hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). GP73 was augmented in HBV; Pten-/- livers. Knockout of GP73 blunted the synergistic effect of deficient Pten and transgenic HBV on liver injury, inflammation, fibrosis and cancer development. CONCLUSIONS: This mixed HCC-ICC mouse model mimics liver cancer patients harboring HBV infection and PTEN/AKT signaling pathway alteration. Targeting GP73 is a promising therapeutic strategy for cancer patients with HBV infection and PTEN alteration.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Fosfohidrolasa PTEN , Animales , Humanos , Ratones , Carcinoma Hepatocelular/patología , Fibrosis , Hepatitis B/complicaciones , Virus de la Hepatitis B , Inflamación/patología , Hígado/patología , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Fosfohidrolasa PTEN/metabolismo
11.
BMC Microbiol ; 24(1): 62, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373936

RESUMEN

BACKGROUND: In this study, we investigated the effects of alpine meadow in different phenological periods on ruminal fermentation, serum biochemical indices, and gastrointestinal tract microbes in grazing yak on the Qinghai-Tibetan Plateau. A total of eighteen female freely grazing yaks with an average age of 3 years old and a body weight of 130 ± 19 kg were selected. According to the plant phenological periods, yaks were randomly allocated to one of three treatments: (1) regreen periods group (RP, n = 6); (2) grassy periods group (GP, n = 6); and (3) hay periods group (HP, n = 6). At the end of the experiment, the blood, rumen fluids, and rectal contents were collected to perform further analysis. RESULTS: The concentrations of total volatile fatty acid (TVFA), acetate, glucose (GLU), triglyceride (TG), cholesterol (CHO), high density lipoprotein (HDL), and low density lipoprotein (LDL) were higher in the GP group than in the HP group (P < 0.05). However, compared with the RP and GP groups, the HP group had higher concentrations of isobutyrate, isovalerate, valerate, and creatinine (CREA) (P < 0.05). The abundance of Prevotella in the rumen, and the abundances of Rikenellaceae_RC9_gut_group, Eubacterium_coprostanoligenes_group, and Prevotellaceae_UCG-004 in the gut were higher in the GP group compared with the HP group (P < 0.05). The HP had higher abundance of Eubacterium_coprostanoligenes_group in the rumen as well as the abundances of Romboutsia and Arthrobacter in the gut compared with the RP and GP groups (P < 0.05). CONCLUSIONS: Based on the results of rumen fermentation, serum biochemical, differential biomarkers, and function prediction, the carbohydrate digestion of grazing yak would be higher with the alpine meadow regreen and grassy due to the gastrointestinal tract microbes. However, the risk of microbe disorders and host inflammation in grazing yak were higher with the alpine meadow wither.


Asunto(s)
Pradera , Rumen , Animales , Bovinos , Bacterias/genética , Bacteroidetes , Fermentación , Tracto Gastrointestinal , Rumen/microbiología , Tibet
12.
Ann Neurol ; 93(4): 830-843, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36546684

RESUMEN

OBJECTIVE: Recent evidence supports a link between increased TDP-43 burden and the presence of an APOE4 gene allele in Alzheimer's disease (AD); however, it is difficult to conclude the direct effect of APOE on TDP-43 pathology due to the presence of mixed AD pathologies. The goal of this study is to address how APOE isoforms impact TDP-43 pathology and related neurodegeneration in the absence of typical AD pathologies. METHODS: We overexpressed human TDP-43 via viral transduction in humanized APOE2, APOE3, APOE4 mice, and murine Apoe-knockout (Apoe-KO) mice. Behavior tests were performed across ages. Animals were harvested at 11 months of age and TDP-43 overexpression-related neurodegeneration and gliosis were assessed. To further address the human relevance, we analyzed the association of APOE with TDP-43 pathology in 160 postmortem brains from autopsy-confirmed amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) in the Mayo Clinic Brain Bank. RESULTS: We found that TDP-43 overexpression induced motor function deficits, neuronal loss, and gliosis in the motor cortex, especially in APOE2 mice, with much milder or absent effects in APOE3, APOE4, or Apoe-KO mice. In the motor cortex of the ALS and FTLD-MND postmortem human brains, we found that the APOE2 allele was associated with more severe TDP-43-positive dystrophic neurites. INTERPRETATION: Our data suggest a genotype-specific effect of APOE on TDP-43 proteinopathy and neurodegeneration in the absence of AD pathology, with the strongest association seen with APOE2. ANN NEUROL 2023;93:830-843.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedad de la Neurona Motora , Humanos , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Apolipoproteína E2/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E3 , Gliosis/genética , Proteínas de Unión al ADN/genética , Apolipoproteínas E/genética , Degeneración Lobar Frontotemporal/patología
13.
Toxicol Appl Pharmacol ; 485: 116890, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492674

RESUMEN

Ricin (ricin toxin, RT) has the potential to cause damage to multiple organs and systems. Currently, there are no existing antidotes, vaccinations, or effective therapies to prevent or treat RT intoxication. Apart from halting protein synthesis, RT also induces oxidative stress, inflammation and autophagy. To explore the mechanisms of RT-induced inflammatory injury and specific targets of prevention and treatment for RT poisoning, we characterized the role of cross-talk between autophagy and NLRP3 inflammasome in RT-induced damage and elucidated the underlying mechanisms. We showed that RT-induced inflammation was attributed to activation of the TLR4/MyD88/NLRP3 signaling and ROS production, evidenced by increased ASC speck formation and attenuated TXNIP/TRX-1 interaction, as well as pre-treatment with MCC950, MyD88 knockdown and NAC significantly reduced IL-1ß, IL-6 and TNF-α mRNA expression. In addition, autophagy is also enhanced in RT-triggered MLE-12 cells. RT elevated the levels of ATG5, p62 and Beclin1 protein, provoked the accumulation of LC3 puncta detected by immunofluorescence staining. Treatment with rapamycin (Rapa) reversed the RT-caused TLR4/MyD88/NLRP3 signaling activation, ASC specks formation as well as the levels of IL-1ß, IL-6 and TNF-α mRNA. In conclusion, RT promoted NLRP3 inflammasome activation and autophgay. Inflammation induced by RT was attenuated by autophagy activation, which suppressed the NLRP3 inflammasome. These findings suggest Rapa as a potential therapeutic drug for the treatment of RT-induced inflammation-related diseases.


Asunto(s)
Autofagia , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ricina , Transducción de Señal , Autofagia/efectos de los fármacos , Animales , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Ricina/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Inflamación/metabolismo , Inflamación/inducido químicamente , Línea Celular , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
14.
J Nutr ; 154(4): 1209-1218, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342405

RESUMEN

BACKGROUND: Although iodine modulates bone metabolism in the treatment of thyroid disease, the effect of iodine intake on bone metabolism remains less known. OBJECTIVE: This study evaluated the effect of excess iodine intake in rats on bone reconstruction in the 6th and 12th month of intervention. METHOD: Rats were treated with different doses of iodinated water: the normal group (NI, 6.15 µg/d), 5-fold high iodine group (5HI, 30.75 µg/d), 10-fold high iodine group (10HI, 61.5 µg/d), 50-fold high iodine group (50HI, 307.5 µg/d), and 100-fold high iodine group (100HI, 615 µg/d). Thyroid hormone concentrations were determined by a chemiluminescent immunoassay. Morphometry and microstructure of bone trabecula were observed by hematoxylin and eosin staining and microcomputed tomography, respectively. Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) staining were performed to evaluate the activity of osteoblasts and osteoclasts, respectively. RESULTS: The 24-h urine iodine concentration increased with iodine intake. The rats in the HI groups had higher serum thyroid-stimulating hormone and decreased serum free thyroxine concentrations in the 12th month than the NI group (all P < 0.05). The percentage of the trabecular bone area and osteoblast perimeter in the 100HI group were significantly lower than those in the NI group (P < 0.05). Increased structure model index was observed in the 50HI and 100HI groups compared with the NI group in the 6th month and increased trabecular separation in the 12th month (all P < 0.05). ALP and TRAP staining revealed osteoblastic bone formation was reduced, and the number of TRAP+ multinucleated cells decreased with increasing iodine intake. CONCLUSIONS: Excess iodine intake may increase the risk of hypothyroidism in rats. Chronic excess iodine intake can lead to abnormal changes in skeletal structure, resulting in reduced activity of osteoblasts and osteoclasts, which inhibits the process of bone reconstruction and may lead to osteoporosis.


Asunto(s)
Hipotiroidismo , Yodo , Osteoporosis , Ratas , Animales , Tiroxina , Microtomografía por Rayos X , Hipotiroidismo/metabolismo , Osteoporosis/prevención & control , Fosfatasa Alcalina
15.
J Magn Reson Imaging ; 59(4): 1206-1217, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37526043

RESUMEN

BACKGROUND: Tertiary lymphoid structures (TLSs) are potential prognostic indicators. Radiomics may help reduce unnecessary invasive operations. PURPOSE: To analyze the association between TLSs and prognosis, and to establish a nomogram model to evaluate the expression of TLSs in breast cancer (BC) patients. STUDY TYPE: Retrospective. POPULATION: Two hundred forty-two patients with localized primary BC (confirmed by surgery) were divided into BC + TLS group (N = 122) and BC - TLS group (N = 120). FIELD STRENGTH/SEQUENCE: 3.0T; Caipirinha-Dixon-TWIST-volume interpolated breath-hold sequence for dynamic contrast-enhanced (DCE) MRI and inversion-recovery turbo spin echo sequence for T2-weighted imaging (T2WI). ASSESSMENT: Three models for differentiating BC + TLS and BC - TLS were developed: 1) a clinical model, 2) a radiomics signature model, and 3) a combined clinical and radiomics (nomogram) model. The overall survival (OS), distant metastasis-free survival (DMFS), and disease-free survival (DFS) were compared to evaluate the prognostic value of TLSs. STATISTICAL TESTS: LASSO algorithm and ANOVA were used to select highly correlated features. Clinical relevant variables were identified by multivariable logistic regression. Model performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and through decision curve analysis (DCA). The Kaplan-Meier method was used to calculate the survival rate. RESULTS: The radiomics signature model (training: AUC 0.766; test: AUC 0.749) and the nomogram model (training: AUC 0.820; test: AUC 0.749) showed better validation performance than the clinical model. DCA showed that the nomogram model had a higher net benefit than the other models. The median follow-up time was 52 months. While there was no significant difference in 3-year OS (P = 0.22) between BC + TLS and BC - TLS patients, there were significant differences in 3-year DFS and 3-year DMFS between the two groups. DATA CONCLUSION: The nomogram model performs well in distinguishing the presence or absence of TLS. BC + TLS patients had higher long-term disease control rates and better prognoses than those without TLS. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias de la Mama , Estructuras Linfoides Terciarias , Humanos , Femenino , Pronóstico , Neoplasias de la Mama/diagnóstico por imagen , Radiómica , Estudios Retrospectivos , Imagen por Resonancia Magnética
16.
Ann Hematol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38890176

RESUMEN

TPO receptor agonists (TPO-RAs) are a class of clinical second-line regimens for the treatment of primary immune thrombocytopenia (ITP). It can promote megakaryocyte maturation and increase platelet production, but its effect on immunosuppressive cells in patients with ITP has not been explored. Sixty-two ITP patients and 34 healthy controls (HCs) were included in this study. The proportion and functions of myeloid-derived immunosuppressive cells (MDSCs) in ITP patients and HCs were investigated. We found that the proportion and function of MDSCs in ITP patients treated with TPO-RAs were significantly higher than those treated with glucocorticoids (GCs), which was correlated with the clinical efficacy. The proportion and function of cytotoxic Th1 cells and CD8+T cells decreased, while the proportion and immunosuppressive function of Treg cells increased in ITP patients treated with TPO-RAs. We further proved, through MDSC depletion tests, that the inhibitory effect of MDSCs on Th1 cells and the promotion of Treg cells in the original immune micro-environment of GCs-treated ITP patients were impaired; however, these MDSCs' functions were improved in TPO-RAs-treated patients. Finally, we found that the KLF9 gene in MDSCs cells of ITP patients treated with TPO-RAs was down-regulated, which contribute to the higher mRNA expression of GADD34 gene and improved function of MDSCs. These results demonstrate a novel mechanism of TPO-RAs for the treatment of ITP through the assessment of MDSCs and their subsequent impact on T cells, which provides a new basis for TPO-RAs as first-line treatment approach to the treatment of ITP.

17.
Wound Repair Regen ; 32(3): 217-228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38602068

RESUMEN

Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation-associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three-dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation-associated skin injuries. Combining with the cutting-edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation-associated skin injuries.


Asunto(s)
Bioimpresión , Impresión Tridimensional , Traumatismos por Radiación , Piel , Humanos , Bioimpresión/métodos , Traumatismos por Radiación/terapia , Piel/efectos de la radiación , Piel/lesiones , Piel/patología , Cicatrización de Heridas , Ingeniería de Tejidos/métodos
18.
J Fluoresc ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722498

RESUMEN

In this study, we present a novel near-infrared (NIR) fluorescent probe Nile-ONO designed for the selective and sensitive detection of ONOO-. The probe Nile-ONO employed Nile red as the fluorophore, with diphenylphosphinate serving as the reaction site. In the presence of ONOO-, the probe Nile-ONO exhibits remarkable fluorescence enhancement at 659 nm, with a response time of less than 20 min and a low detection limit of 0.32 µM. Importantly, MTT assays demonstrate low cytotoxicity in living cells. Furthermore, Nile-ONO has excellent imaging capabilities for endogenous ONOO-. Overall, this work introduces a valuable new method for the rapid detection of ONOO- in biological systems.

19.
Brain ; 146(10): 4350-4365, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37254741

RESUMEN

Alzheimer's disease, the most common cause of dementia, is a chronic degenerative disease with typical pathological features of extracellular senile plaques and intracellular neurofibrillary tangles and a significant decrease in the density of neuronal dendritic spines. Cdc42 is a member of the small G protein family that plays an important role in regulating synaptic plasticity and is regulated by Cdc42GAP, which switches Cdc42 from active GTP-bound to inactive GDP-bound states regulating downstream pathways via effector proteins. However, few studies have focused on Cdc42 in the progression of Alzheimer's disease. In a heterozygous Cdc42GAP mouse model that exhibited elevated Cdc42-GTPase activity accompanied by increased Cdc42-PAK1-cofilin signalling, we found impairments in cognitive behaviours, neuron senescence, synaptic loss with depolymerization of F-actin and the pathological phenotypes of Alzheimer's disease, including phosphorylated tau (p-T231, AT8), along with increased soluble and insoluble Aß1-42 and Aß1-40, which are consistent with typical Alzheimer's disease mice. Interestingly, these impairments increased significantly with age. Furthermore, the results of quantitative phosphoproteomic analysis of the hippocampus of 11-month-old GAP mice suggested that Cdc42GAP deficiency induces and accelerates Alzheimer's disease-like phenotypes through activation of GSK-3ß by dephosphorylation at Ser9, Ser389 and/or phosphorylation at Tyr216. In addition, overexpression of dominant-negative Cdc42 in the primary hippocampal and cortical neurons of heterozygous Cdc42GAP mice reversed synaptic loss and tau hyperphosphorylation. Importantly, the Cdc42 signalling pathway, Aß1-42, Aß1-40 and GSK-3ß activity were increased in the cortical sections of Alzheimer's disease patients compared with those in healthy controls. Together, these data indicated that Cdc42GAP is involved in regulating Alzheimer's disease-like phenotypes such as cognitive deficits, dendritic spine loss, phosphorylated tau (p-T231, AT8) and increased soluble and insoluble Aß1-42 and Aß1-40, possibly through the activation of GSK-3ß, and these impairments increased significantly with age. Thus, we provide the first evidence that Cdc42 is involved in the progression of Alzheimer's disease-like phenotypes, which may provide new targets for Alzheimer's disease treatment.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Activadoras de GTPasa , Animales , Humanos , Ratones , Actinas/metabolismo , Enfermedad de Alzheimer/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neuronas/metabolismo , Fenotipo , Fosforilación , Proteínas tau/genética , Proteínas tau/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo
20.
Environ Res ; 255: 119157, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762002

RESUMEN

Land use types have a significant impact on river ecosystems. The Yiluo River is the largest tributary below Xiaolangdi Reservoir in the middle reaches of the Yellow River, and is one of the important water conservation areas in the Yellow River Basin. Studying the ecological status of the Yiluo River under varied land use types in this basin is crucial for both ecological protection and the high-quality development of the Yellow River Basin. This study investigated the impacts of land use types on the macroinvertebrate community and functional structure in the Yiluo River Basin and introduced the concept of the land use health index (LUI). During the survey period, a total of 11,894 macroinvertebrates were collected, and 143 species were identified, belonging to 4 phyla, 7 orders, 22 families, and 75 families. The results showed that LUI had the most significant impact on macroinvertebrate community structure, with substrate type, dry plant weight, total phosphorus, turbidity, and attached algae biomass also playing significant roles in affecting macroinvertebrate communities. The species richness, the Shannon-Wiener index, and the Margalef richness index exhibited a nonlinear positive correlation with LUI of the sampling site, increasing as LUI enhancing and eventually reaching a plateau. Functional richness showed a linear and positive correlation with LUI, increasing with its enhancement, while functional evenness and functional divergence exhibited a nonlinear correlation with LUI. Functional evenness initially increased and then decreased with the enhancement of LUI, while functional divergence decreased with LUI enhancement. This study can provide a scientific reference for river ecological management under various land use scenarios.The Yiluo River is the largest tributary below Xiaolangdi Reservoir in the middle reaches of the Yellow River, and is one of the important water conservation areas in the Yellow River Basin. Studying the ecological status of the Yiluo River under varied land use types in this basin is crucial for both ecological protection and the high-quality development of the Yellow River Basin. This study investigated the impacts of land use types on the macroinvertebrate community and functional structure in the Yiluo River Basin and introduced the concept of the land use health index (LUI). During the survey period, a total of 11,894 macroinvertebrates were collected, and 143 species were identified, belonging to 4 phyla, 7 orders, 22 families, and 75 families. The results showed that LUI had the most significant impact on macroinvertebrate community structure, with substrate type, dry plant weight, total phosphorus, turbidity, and attached algae biomass also playing significant roles in affecting macroinvertebrate communities. The species richness, the Shannon-Wiener index, and the Margalef richness index exhibited a nonlinear positive correlation with LUI of the sampling site, increasing as LUI enhancing and eventually reaching a plateau. Functional richness showed a linear and positive correlation with LUI, increasing with its enhancement, while functional evenness and functional divergence exhibited a nonlinear correlation with LUI. Functional evenness initially increased and then decreased with the enhancement of LUI, while functional divergence decreased with LUI enhancement. This study can provide a scientific reference for river ecological management under various land use scenarios.


Asunto(s)
Biodiversidad , Invertebrados , Ríos , Invertebrados/clasificación , Ríos/química , Animales , China , Monitoreo del Ambiente , Agricultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA