Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 186(16): 3350-3367.e19, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37421950

RESUMEN

Synucleinopathies are characterized by the accumulation of α-synuclein (α-Syn) aggregates in the brain. Positron emission tomography (PET) imaging of synucleinopathies requires radiopharmaceuticals that selectively bind α-Syn deposits. We report the identification of a brain permeable and rapid washout PET tracer [18F]-F0502B, which shows high binding affinity for α-Syn, but not for Aß or Tau fibrils, and preferential binding to α-Syn aggregates in the brain sections. Employing several cycles of counter screenings with in vitro fibrils, intraneuronal aggregates, and neurodegenerative disease brain sections from several mice models and human subjects, [18F]-F0502B images α-Syn deposits in the brains of mouse and non-human primate PD models. We further determined the atomic structure of the α-Syn fibril-F0502B complex by cryo-EM and revealed parallel diagonal stacking of F0502B on the fibril surface through an intense noncovalent bonding network via inter-ligand interactions. Therefore, [18F]-F0502B is a promising lead compound for imaging aggregated α-Syn in synucleinopathies.


Asunto(s)
Enfermedades Neurodegenerativas , Sinucleinopatías , Animales , Humanos , alfa-Sinucleína/metabolismo , Sinucleinopatías/diagnóstico por imagen , Sinucleinopatías/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(35): e2321633121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172784

RESUMEN

α-synuclein (α-syn) assembles into structurally distinct fibril polymorphs seen in different synucleinopathies, such as Parkinson's disease and multiple system atrophy. Targeting these unique fibril structures using chemical ligands holds diagnostic significance for different disease subtypes. However, the molecular mechanisms governing small molecules interacting with different fibril polymorphs remain unclear. Here, we investigated the interactions of small molecules belonging to four distinct scaffolds, with different α-syn fibril polymorphs. Using cryo-electron microscopy, we determined the structures of these molecules when bound to the fibrils formed by E46K mutant α-syn and compared them to those bound with wild-type α-syn fibrils. Notably, we observed that these ligands exhibit remarkable binding adaptability, as they engage distinct binding sites across different fibril polymorphs. While the molecular scaffold primarily steered the binding locations and geometries on specific sites, the conjugated functional groups further refined this adaptable binding by fine-tuning the geometries and binding sites. Overall, our finding elucidates the adaptability of small molecules binding to different fibril structures, which sheds light on the diagnostic tracer and drug developments tailored to specific pathological fibril polymorphs.


Asunto(s)
Amiloide , Microscopía por Crioelectrón , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Amiloide/metabolismo , Amiloide/química , Ligandos , Humanos , Sitios de Unión , Unión Proteica , Enfermedad de Parkinson/metabolismo , Mutación
3.
Nat Chem Biol ; 19(10): 1235-1245, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37400537

RESUMEN

Amyloid fibril is an important pharmaceutical target for diagnostic and therapeutic treatment of neurodegenerative diseases. However, rational design of chemical compounds that interact with amyloid fibrils is unachievable due to the lack of mechanistic understanding of the ligand-fibril interaction. Here we used cryoelectron microscopy to survey the amyloid fibril-binding mechanism of a series of compounds including classic dyes, (pre)clinical imaging tracers and newly identified binders from high-throughput screening. We obtained clear densities of several compounds in complex with an α-synuclein fibril. These structures unveil the basic mechanism of the ligand-fibril interaction, which exhibits remarkable difference from the canonical ligand-protein interaction. In addition, we discovered a druggable pocket that is also conserved in the ex vivo α-synuclein fibrils from multiple system atrophy. Collectively, these findings expand our knowledge of protein-ligand interaction in the amyloid fibril state, which will enable rational design of amyloid binders in a medicinally beneficial way.


Asunto(s)
Amiloide , alfa-Sinucleína , alfa-Sinucleína/química , Microscopía por Crioelectrón , Amiloide/química , Ligandos
4.
J Mol Biol ; 435(1): 167680, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35690099

RESUMEN

Amyloid aggregation of α-synuclein (α-syn) in Lewy bodies (LBs) is the pathological hallmark of Parkinson's disease (PD). Iron, especially Fe3+, is accumulated in substantia nigra of PD patients and co-deposited with α-syn in LBs. However, how Fe3+ modulates α-syn fibrillation at molecular level remains unclear. In this study, we found that Fe3+ can promote α-syn fibrillation at low concentration while inhibit its fibrillation at high concentration. NMR titration study shows poor interaction between α-syn monomer and Fe3+. Instead, we found that Fe3+ binds to α-syn fibrils. By using cryo-electron microscopy (cryo-EM), we further determined the atomic structure of α-syn fibril in complex with Fe3+ at the resolution of 2.7 Å. Strikingly, two extra electron densities adjacent to His50 and Glu57 were observed as putative binding sites of Fe3+ and water molecules, suggesting that Fe3+ binds to the negative cleft of the fibril and stabilizes the fibril structure for promoting α-syn aggregation. Further mutagenesis study shows mutation of His50 abolishes the Fe3+-facilitated fibrillation of α-syn. Our work illuminates the structural basis of the interaction of Fe3+ and α-syn in both monomeric and fibrillar forms, and sheds light on understanding the pathological role of Fe3+ in α-syn aggregation in PD.


Asunto(s)
Amiloide , Enfermedad de Parkinson , Agregación Patológica de Proteínas , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/genética , Amiloide/química , Microscopía por Crioelectrón , Mutación , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/metabolismo , Hierro/química
5.
Structure ; 31(1): 78-87.e5, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36513068

RESUMEN

α-Synuclein (α-syn) has been shown to form various conformational fibrils associated with different synucleinopathies. But whether the conformation of α-syn fibrils changes during disease progression is unclear. Here, we amplified α-syn aggregates from the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD) staged in preclinical PD (pre-PD), middle- to late-stage PD (mid-PD), and late-stage PD (late-PD). Our results show that α-syn fibrils derived from the late-PD patient are most potent in inducing endogenous α-syn aggregation in primary neurons, followed by the mid-PD and pre-PD fibrils. By using cryo-electron microscopy, we further determined the high-resolution structures of the CSF-amplified fibrils. The structures exhibit remarkable differences in a minor but significant population of conformational species in different staged samples. Our work demonstrates structural and pathological differences between α-syn fibrils derived from PD patients at a spectrum of clinical stages, which suggests potential conformational transition of α-syn fibrils during the progression of PD.


Asunto(s)
Amiloide , Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/líquido cefalorraquídeo , alfa-Sinucleína/química , Amiloide/líquido cefalorraquídeo , Amiloide/química , Microscopía por Crioelectrón , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/patología , Conformación Proteica , Agregado de Proteínas , Agregación Patológica de Proteínas/líquido cefalorraquídeo
6.
Nat Commun ; 13(1): 4226, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869048

RESUMEN

α-Synuclein (α-syn), as a primary pathogenic protein in Parkinson's disease (PD) and other synucleinopathies, exhibits a high potential to form polymorphic fibrils. Chemical ligands have been found to involve in the assembly of α-syn fibrils in patients' brains. However, how ligands influence the fibril polymorphism remains vague. Here, we report the near-atomic structures of α-syn fibrils in complex with heparin, a representative glycosaminoglycan (GAG), determined by cryo-electron microscopy (cryo-EM). The structures demonstrate that the presence of heparin completely alters the fibril assembly via rearranging the charge interactions of α-syn both at the intramolecular and the inter-protofilamental levels, which leads to the generation of four fibril polymorphs. Remarkably, in one of the fibril polymorphs, α-syn folds into a distinctive conformation that has not been observed previously. Moreover, the heparin-α-syn complex fibrils exhibit diminished neuropathology in primary neurons. Our work provides the structural mechanism for how heparin determines the assembly of α-syn fibrils, and emphasizes the important role of biological polymers in the conformational selection and neuropathology regulation of amyloid fibrils.


Asunto(s)
Heparina , alfa-Sinucleína , Amiloide/metabolismo , Microscopía por Crioelectrón , Humanos , Conformación Proteica , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA