Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2404089, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39036855

RESUMEN

Extending the layer spacing of the (001) planes to regulate the mobility of Zn2+ is widely adopted to optimize the performance of VOPO4·2H2O cathode for zinc-ion batteries. However, the unique function originating from other planes is often neglected. Herein, an effective in situ conversion methodology is proposed for the synthesis of the (200) oriented growth of vertical VOPO4·2H2O nanosheets with oxygen vacancies (VOd-VOPO4). Theoretical simulation and ex situ characterizations collaboratively demonstrate that the richly exposed (200) plane with tetragonal channels can offer quick pathways for in-layer and cross-layer migration of Zn2+, exhibiting enhanced transfer kinetics with improved reversible capacity. Meanwhile, efficient electron migration in VOd-VOPO4 is guaranteed by the introduction of oxygen vacancies. Thus, the as-prepared VOd-VOPO4 harvests exceptional discharge capacity, impressive rate capability, and remarkable long-cycle stability at high mass loading. Notably, the VOd-VOPO4 electrode (15 mg cm-2) provides a capacity of 213.5 mAh g-1 with an ultrahigh areal capacity of 3.02 mAh cm-2 at 0.1 A g-1, showing great potential for applications. This study highlights the orientated growth strategy for facilitating ion storage and migration, offering novel perspectives on the development of high-performance electrodes and beyond.

2.
Molecules ; 29(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543015

RESUMEN

The rhizomes of the genus Atractylodes DC. consist of various bioactive components, including sesquiterpenes, which have attracted a great deal of research interest in recent years. In the present study, we reviewed the previously published literatures prior to November 2023 on the chemical structures, biosynthetic pathways, and pharmacological activities of the sesquiterpenoids from this genus via online databases such as Web of Science, Google Scholar, and ScienceDirect. Phytochemical studies have led to the identification of more than 160 sesquiterpenes, notably eudesmane-type sesquiterpenes. Many pharmacological activities have been demonstrated, particularly anticancer, anti-inflammatory, and antibacterial and antiviral activities. This review presents updated, comprehensive and categorized information on the phytochemistry and pharmacology of sesquiterpenes in Atractylodes DC., with the aim of offering guidance for the future exploitation and utilization of active ingredients in this genus.


Asunto(s)
Atractylodes , Sesquiterpenos de Eudesmano , Sesquiterpenos , Atractylodes/química , Rizoma/química , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Etnofarmacología , Extractos Vegetales/farmacología , Extractos Vegetales/análisis , Fitoterapia
3.
Acta Cardiol Sin ; 40(2): 225-234, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38532813

RESUMEN

Background: Atrial fibrosis is an important factor leading to atrial fibrillation, and the transforming growth factor-ß1/Smad pathway is a key factor in inducing atrial fibrosis. Sirt1 is a member of the histone deacetylase (sirtuin) family, and recent studies have proven its cardioprotective effects. Objectives: This study explored the effect of Sirt1 on atrial fibrosis through the transforming growth factor-ß1/Smad pathway. Methods: We analyzed human right atrial appendage tissues and explored the relationship between Sirt1 and atrial fibrosis at the morphological, functional and molecular levels by Masson trichrome staining, immunofluorescence, real-time quantitative polymerase chain reaction and Western blot analysis. Rat atrial fibroblasts were extracted and treated by the Sirt1 agonist resveratrol, inhibitor sirtinol, and recombinant human transforming growth factor-ß1 protein. The expression levels of related proteins were detected by Western blot, and the effect on the migration of atrial fibroblasts was detected by wound healing assay. Results: We found that the expression of Sirt1 was reduced in the right atrial appendage tissues of patients with atrial fibrillation, and the degree of fibrosis was increased. In atrial fibroblasts, the activation of Sirt1 could inhibit the expression of transforming growth factor-ß1/Smad and reduce the development of fibrosis, while inhibiting Sirt1 reduced its inhibitory effect on the transforming growth factor-ß1/Smad pathway. Conclusions: These findings indicate that Sirt1 inhibits atrial fibrosis by downregulating the expression of the transforming growth factor-ß1/Smad pathway, and provide potential targets for the treatment of atrial fibrillation.

4.
Front Neurosci ; 18: 1388742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638693

RESUMEN

Existing statistical data indicates that an increasing number of people now require rehabilitation to restore compromised physical mobility. During the rehabilitation process, physical therapists evaluate and guide the movements of patients, aiding them in a more effective recovery of rehabilitation and preventing secondary injuries. However, the immutability of mobility and the expensive price of rehabilitation training hinder some patients from timely access to rehabilitation. Utilizing virtual reality for rehabilitation training might offer a potential alleviation to these issues. However, prevalent pose reconstruction algorithms in rehabilitation primarily rely on images, limiting their applicability to virtual reality. Furthermore, existing pose evaluation and correction methods in the field of rehabilitation focus on providing clinical metrics for doctors, and failed to offer patients efficient movement guidance. In this paper, a virtual reality-based rehabilitation training method is proposed. The sparse motion signals from virtual reality devices, specifically head-mounted displays hand controllers, is used to reconstruct full body poses. Subsequently, the reconstructed poses and the standard poses are fed into a natural language processing model, which contrasts the difference between the two poses and provides effective pose correction guidance in the form of natural language. Quantitative and qualitative results indicate that the proposed method can accurately reconstruct full body poses from sparse motion signals in real-time. By referencing standard poses, the model generates professional motion correction guidance text. This approach facilitates virtual reality-based rehabilitation training, reducing the cost of rehabilitation training and enhancing the efficiency of self-rehabilitation training.

5.
AMB Express ; 14(1): 21, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351413

RESUMEN

Blue light promotes primordium differentiation and fruiting body formation of mushroom. However, the blue light response mechanism of mushroom remains unclear. In this study, mycelium of Flammulina filiformis was exposed to blue light, red light and dark conditions, and then the comparative metabolome and transcriptome analysis was applied to explore metabolic regulation mechanism of F. filiformis under blue light and red light conditions. The yield of the fruiting body of F. filiformis under blue light condition was much higher than that under dark and red light conditions. Metabolome analysis showed that blue light treatment reduced the concentrations of many low molecular weight carbohydrates in the pilei, but it promoted the accumulation of some low molecular weight carbohydrates in the stipes. Blue light also decreased the accumulation of organic acids in the stipes. Blue light treatment reduced the levels of tyrosine and tryptophan in the stipes, but it largely promoted the accumulation of lysine in this organ. In the stipes of F. filiformis, blue light shifted metabolite flow to synthesis of lysine and carbohydrates through inhibiting the accumulation of aromatic amino acids and organic acids, thereby enhancing its nutritional and medicinal values. The transcriptome analysis displayed that blue light enhanced accumulation of lysine in fruiting body of F. filiformis through downregulation of lysine methyltransferase gene and L-lysine 6-monooxygenase gene. Additionally, in the stipes, blue light upregulated many hydrolase genes to improve the ability of the stipe to biodegrade the medium and elevated the growth rate of the fruiting body.

6.
Plants (Basel) ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732442

RESUMEN

Soil alkalization is an important environmental factor limiting crop production. Despite the importance of root secretion in the response of plants to alkali stress, the regulatory mechanism is unclear. In this study, we applied a widely targeted metabolomics approach using a local MS/MS data library constructed with authentic standards to identify and quantify root exudates of wheat under salt and alkali stresses. The regulatory mechanism of root secretion in alkali-stressed wheat plants was analyzed by determining transcriptional and metabolic responses. Our primary focus was alkali stress-induced secreted metabolites (AISMs) that showed a higher secretion rate in alkali-stressed plants than in control and salt-stressed plants. This secretion was mainly induced by high-pH stress. We discovered 55 AISMs containing -COOH groups, including 23 fatty acids, 4 amino acids, 1 amino acid derivative, 7 dipeptides, 5 organic acids, 9 phenolic acids, and 6 others. In the roots, we also discovered 29 metabolites with higher levels under alkali stress than under control and salt stress conditions, including 2 fatty acids, 3 amino acid derivatives, 1 dipeptide, 2 organic acids, and 11 phenolic acids. These alkali stress-induced accumulated carboxylic acids may support continuous root secretion during the response of wheat plants to alkali stress. In the roots, RNAseq analysis indicated that 5 6-phosphofructokinase (glycolysis rate-limiting enzyme) genes, 16 key fatty acid synthesis genes, and 122 phenolic acid synthesis genes have higher expression levels under alkali stress than under control and salt stress conditions. We propose that the secretion of multiple types of metabolites with a -COOH group is an important pH regulation strategy for alkali-stressed wheat plants. Enhanced glycolysis, fatty acid synthesis, and phenolic acid synthesis will provide more energy and substrates for root secretion during the response of wheat to alkali stress.

7.
Environ Sci Pollut Res Int ; 31(22): 32407-32415, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38652186

RESUMEN

The dynamic change of redox conditions is a key factor in emission of elemental mercury (Hg0) from riparian soils. The objective of this study was to elucidate the influences of redox conditions on Hg0 emission from riparian soils. Soil suspension experiments were conducted to measure Hg0 emission from five Hg-contaminated soil samples in two redox conditions (i.e., treated with air or with N2). In four of the five samples, Hg0 emission was higher in air treatment than on N2 treatment. Remaining one soil, which has higher organic matter than other soils, showed no distinct difference in Hg0 production between air and N2 treatment. In soil suspensions subject to N2 treatment, the dissolved organic carbon (DOC) and Fe2+ concentrations were 3.38- to 1.34-fold and 1.44- to 2.28-fold higher than those in air treatment, respectively. Positive correlations were also found between the DOC and Fe2+ (r = 0.911, p < 0.01) and Hg2+ (r = 0.815, p < 0.01) concentrations in soil solutions, suggesting Fe2+ formation led to the release of DOC, which bound to Hg2+ in the soil and, in turn, limited the availability of Hg2+ for reduction to Hg0 in N2 treatment. On the other hand, for remaining one soil, more Hg2+ might be adsorbed onto the DOM in the air treatment, resulted in the inhibition of Hg0 production in air treatment. These results imply that the organic matter is important to prevent Hg0 production by changing redox condition. Further study is needed to prove the role of organic matter in the production of Hg0.


Asunto(s)
Mercurio , Nitrógeno , Contaminantes del Suelo , Suelo , Mercurio/análisis , Contaminantes del Suelo/análisis , Suelo/química , Oxidación-Reducción
8.
Front Microbiol ; 15: 1344905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544859

RESUMEN

American ginseng residue is an industrial by-product of ginseng saponin extraction, including polysaccharides and amino acids; however, it is often discarded into the natural environment, representing a waste of resources as well as an environmental issue. In this study, we examined the effects of adding American ginseng residue to the basal diet of sika deer. Twelve antler-bearing male sika deer were assigned randomly to groups fed a diet supplemented with 0% (CON), 1% (LGR), and 3% (HGR) American ginseng residue, respectively, (n = 4 per group) for 5 weeks. Supplementation with 3% American ginseng residue significantly increased antler production and feed utilization efficiency in antler-bearing sika deer (p < 0.05). There were no significant differences in serum biochemical indexes among the three groups, but serum immunoglobulin A and glutathione peroxidase levels were significantly increased in the LGR and HGR groups (p < 0.05). Supplementation with American ginseng residue affected rumen fermentation in sika deer, significantly increasing the rumen contents of acetic acid, propionic acid, and total volatile fatty acids, and decreasing rumen fluid pH (p < 0.05), but had no significant effect on microbial protein or ammoniacal nitrogen content. American ginseng residue also affected the rumen bacterial composition, with significant up-regulation of Bacteroidota abundance in the HGR group, significant increases in Fibrobacterota and Fibrobacter abundance in the LGR group, and a significant decrease in Oscillospiraceae_UCG-005. Supplementation with ginseng residue had no significant effect on volatile fatty acids in the feces of sika deer, but did affect the composition of fecal bacteria, with significant decreases in Desulfobacterota and Rikenellaceae_RC9_gut_group in the HGR group, and a significant increase in Ruminococcus in the LGR group (p < 0.05). In addition, the abundance of Paeniclostridium in the feces decreased linearly with increasing concentration of ginseng residue, with a significant difference among the groups (p < 0.05). This study comprehensively evaluated the effects of American ginseng residue as a potential feed additive on the production performance and gastrointestinal bacterial community in antler-bearing sika deer. The results indicated that ginseng residue was a suitable feed additive for improving production performance and health in sika deer.

9.
Front Plant Sci ; 15: 1366108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567134

RESUMEN

Leymus chinensis is a dominant halophytic grass in alkalized grasslands of Northeast China. To explore the alkali-tolerance mechanism of L. chinensis, we applied a widely targeted metabolomic approach to analyze metabolic responses of its root exudates, root tissues and leaves under alkali-stress conditions. L. chinensis extensively secreted organic acids, phenolic acids, free fatty acids and other substances having -COOH or phosphate groups when grown under alkali-stress conditions. The buffering capacity of these secreted substances promoted pH regulation in the rhizosphere during responses to alkali stress. L. chinensis leaves exhibited enhanced accumulations of free fatty acids, lipids, amino acids, organic acids, phenolic acids and alkaloids, which play important roles in maintaining cell membrane stability, regulating osmotic pressure and providing substrates for the alkali-stress responses of roots. The accumulations of numerous flavonoids, saccharides and alcohols were extensively enhanced in the roots of L. chinensis, but rarely enhanced in the leaves, under alkali-stress conditions. Enhanced accumulations of flavonoids, saccharides and alcohols increased the removal of reactive oxygen species and alleviated oxygen damage caused by alkali stress. In this study, we revealed the metabolic response mechanisms of L. chinensis under alkali-stress conditions, emphasizing important roles for the accumulation and secretion of organic acids, amino acids, fatty acids and other substances in alkali tolerance.

10.
Biotechnol Biofuels Bioprod ; 17(1): 25, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360683

RESUMEN

BACKGROUND: Bioconversion of plant biomass into biofuels and bio-products produces large amounts of lignin. The aromatic biopolymers need to be degraded before being converted into value-added bio-products. Microbes can be environment-friendly and efficiently degrade lignin. Compared to fungi, bacteria have some advantages in lignin degradation, including broad tolerance to pH, temperature, and oxygen and the toolkit for genetic manipulation. RESULTS: Our previous study isolated a novel ligninolytic bacterial strain Erwinia billingiae QL-Z3. Under optimized conditions, its rate of lignin degradation was 25.24% at 1.5 g/L lignin as the sole carbon source. Whole genome sequencing revealed 4556 genes in the genome of QL-Z3. Among 4428 protein-coding genes are 139 CAZyme genes, including 54 glycoside hydrolase (GH) and 16 auxiliary activity (AA) genes. In addition, 74 genes encoding extracellular enzymes are potentially involved in lignin degradation. Real-time PCR quantification demonstrated that the expression of potential ligninolytic genes were significantly induced by lignin. 8 knock-out mutants and complementary strains were constructed. Disruption of the gene for ELAC_205 (laccase) as well as EDYP_48 (Dyp-type peroxidase), ESOD_1236 (superoxide dismutase), EDIO_858 (dioxygenase), EMON_3330 (monooxygenase), or EMCAT_3587 (manganese catalase) significantly reduced the lignin-degrading activity of QL-Z3 by 47-69%. Heterologously expressed and purified enzymes further confirmed their role in lignin degradation. Fourier transform infrared spectroscopy (FTIR) results indicated that the lignin structure was damaged, the benzene ring structure and groups of macromolecules were opened, and the chemical bond was broken under the action of six enzymes encoded by genes. The abundant enzymatic metabolic products by EDYP_48, ELAC_205 and ESOD_1236 were systematically analyzed via liquid chromatography-mass spectrometry (LC-MS) analysis, and then provide a speculative pathway for lignin biodegradation. Finally, The activities of ligninolytic enzymes from fermentation supernatant, namely, LiP, MnP and Lac were 367.50 U/L, 839.50 U/L, and 219.00 U/L by orthogonal optimization. CONCLUSIONS: Our findings provide that QL-Z3 and its enzymes have the potential for industrial application and hold great promise for the bioconversion of lignin into bioproducts in lignin valorization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA