Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(25): 10152-10160, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38818902

RESUMEN

Assessing the effectiveness of nanomedicines involves evaluating the drug content at the target site. Currently, most research focuses on monitoring the signal responses from loaded drugs, neglecting the changes caused by the nanohosts. Here, we propose a strategy to quantitatively evaluate the content of loaded drugs by detecting the signal variations resulting from the alterations in the microenvironment of the nanohosts. Specifically, hyperpolarized (HP) 129Xe atoms are employed as probes to sense the nanohosts' environment and generate a specific magnetic resonance (MR) signal that indicates their accessibility. The introduction of drugs reduces the available space in the nanohosts, leading to a crowded microenvironment that hinders the access of the 129Xe atoms. By employing 129Xe atoms as a signal source to detect the alterations in the microenvironment, we constructed a three-dimensional (3D) map that indicated the concentration of the nanohosts and established a linear relationship to quantitatively measure the drug content within the nanohosts based on the corresponding MR signals. Using the developed strategy, we successfully quantified the uptake of the nanohosts and drugs in living cells through HP 129Xe MR imaging. Overall, the proposed HP 129Xe atom-sensing approach can be used to monitor alterations in the microenvironment of nanohosts induced by loaded drugs and provides a new perspective for the quantitative evaluation of drug presence in various nanomedicines.


Asunto(s)
Imagen por Resonancia Magnética , Isótopos de Xenón , Imagen por Resonancia Magnética/métodos , Isótopos de Xenón/química , Humanos , Nanopartículas/química
2.
Magn Reson Med ; 92(3): 956-966, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38770624

RESUMEN

PURPOSE: To demonstrate the feasibility of zigzag sampling for 3D rapid hyperpolarized 129Xe ventilation MRI in human. METHODS: Zigzag sampling in one direction was combined with gradient-recalled echo sequence (GRE-zigzag-Y) to acquire hyperpolarized 129Xe ventilation images. Image quality was compared with a balanced SSFP (bSSFP) sequence with the same spatial resolution for 12 healthy volunteers (HVs). For another 8 HVs and 9 discharged coronavirus disease 2019 subjects, isotropic resolution 129Xe ventilation images were acquired using zigzag sampling in two directions through GRE-zigzag-YZ. 129Xe ventilation defect percent (VDP) was quantified for GRE-zigzag-YZ and bSSFP acquisitions. Relationships and agreement between these VDP measurements were evaluated using Pearson correlation coefficient (r) and Bland-Altman analysis. RESULTS: For 12 HVs, GRE-zigzag-Y and bSSFP required 2.2 s and 10.5 s, respectively, to acquire 129Xe images with a spatial resolution of 3.96 × 3.96 × 10.5 mm3. Structural similarity index, mean absolute error, and Dice similarity coefficient between the two sets of images and ventilated lung regions were 0.85 ± 0.03, 0.0015 ± 0.0001, and 0.91 ± 0.02, respectively. For another 8 HVs and 9 coronavirus disease 2019 subjects, 129Xe images with a nominal spatial resolution of 2.5 × 2.5 × 2.5 mm3 were acquired within 5.5 s per subject using GRE-zigzag-YZ. VDP provided by GRE-zigzag-YZ was strongly correlated (R2 = 0.93, p < 0.0001) with that generated by bSSFP with minimal biases (bias = -0.005%, 95% limit-of-agreement = [-0.414%, 0.424%]). CONCLUSION: Zigzag sampling combined with GRE sequence provides a way for rapid 129Xe ventilation imaging.


Asunto(s)
COVID-19 , Pulmón , Imagen por Resonancia Magnética , SARS-CoV-2 , Isótopos de Xenón , Humanos , COVID-19/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Adulto , Pulmón/diagnóstico por imagen , Persona de Mediana Edad , Imagenología Tridimensional/métodos , Estudios de Factibilidad
3.
NMR Biomed ; 37(4): e5078, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38086710

RESUMEN

Prognosticating acute lung injury (ALI) is challenging, in part because of a lack of sensitive biomarkers. Hyperpolarized gas magnetic resonance (MR) has unique advantages in pulmonary function measurement and can provide promising biomarkers for the assessment of lung injuries. Herein, we employ hyperpolarized 129 Xe MRI and generate a number of imaging biomarkers to detect the pulmonary physiological and morphological changes during the progression of ALI in an animal model. We find the measured ratio of 129 Xe in red blood cells to interstitial tissue/plasma (RBC/TP) is significantly lower in the ALI group on the second (0.32 ± 0.03, p = 0.004), seventh (0.23 ± 0.03, p < 0.001), and 14th (0.29 ± 0.04, p = 0.001) day after lipopolysaccharide treatment compared with that in the control group (0.41 ± 0.04). In addition, significant differences are also observed for RBC/TP measurements between the second and seventh day (p = 0.001) and between the seventh and 14th day (p = 0.018) in the ALI group after treatment. Besides RBC/TP, significant differences are also observed in the measured exchange time constant (T) on the second (p = 0.038) and seventh day (p = 0.009) and in the measured apparent diffusion coefficient (ADC) and alveolar surface-to-volume ratio (SVR) on the 14th day (ADC: p = 0.009 and SVR: p = 0.019) after treatment in the ALI group compared with that in the control group. These findings indicate that the parameters measured with 129 Xe MR can detect the dynamic changes in pulmonary structure and function in an ALI animal model.


Asunto(s)
Lesión Pulmonar Aguda , Imagen por Resonancia Magnética , Animales , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Pulmón/patología , Lesión Pulmonar Aguda/diagnóstico por imagen , Lesión Pulmonar Aguda/patología , Isótopos de Xenón/química , Biomarcadores
4.
J Magn Reson Imaging ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935670

RESUMEN

BACKGROUND: Lung compliance, a biomarker of pulmonary fibrosis, is generally measured globally. Hyperpolarized 129Xe gas MRI offers the potential to evaluate lung compliance regionally, allowing for visualization of changes in lung compliance associated with fibrosis. PURPOSE: To assess global and regional lung compliance in a rat model of pulmonary fibrosis using hyperpolarized 129Xe gas MRI. STUDY TYPE: Prospective. ANIMAL MODEL: Twenty Sprague-Dawley male rats with bleomycin-induced fibrosis model (N = 10) and saline-treated controls (N = 10). FIELD STRENGTH/SEQUENCE: 7-T, fast low-angle shot (FLASH) sequence. ASSESSMENT: Lung compliance was determined by fitting lung volumes derived from segmented 129Xe MRI with an iterative selection method, to corresponding airway pressures. Similarly, lung compliance was obtained with computed tomography for cross-validation. Direction-dependencies of lung compliance were characterized by regional lung compliance ratios (R) in different directions. Pulmonary function tests (PFTs) and histological analysis were used to validate the pulmonary fibrosis model and assess its correlation with 129Xe lung compliance. STATISTICAL TESTS: Shapiro-Wilk tests, unpaired and paired t-tests, Mann-Whitney U and Wilcoxon signed-rank tests, and Pearson correlation coefficients. P < 0.05 was considered statistically significant. RESULTS: For the entire lung, the global and regional lung compliance measured with 129Xe gas MRI showed significant differences between the groups, and correlated with the global lung compliance measured using PFTs (global: r = 0.891; regional: r = 0.873). Additionally, for the control group, significant difference was found in mean regional compliance between areas, eg, 0.37 (0.32, 0.39) × 10-4 mL/cm H2O and 0.47 (0.41, 0.56) × 10-4 mL/cm H2O for apical and basal lung, respectively. The apical-basal direction R was 1.12 ± 0.09 and 1.35 ± 0.13 for fibrosis and control groups, respectively, indicating a significant difference. DATA CONCLUSION: Our findings demonstrate the feasibility of using hyperpolarized gas MRI to assess regional lung compliance. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

5.
Eur Radiol ; 34(11): 7450-7459, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38748243

RESUMEN

OBJECTIVE: To comprehensively assess the impact of aging, cigarette smoking, and chronic obstructive pulmonary disease (COPD) on pulmonary physiology using 129Xe MR. METHODS: A total of 90 subjects were categorized into four groups, including healthy young (HY, n = 20), age-matched control (AMC, n = 20), asymptomatic smokers (AS, n = 28), and COPD patients (n = 22). 129Xe MR was utilized to obtain pulmonary physiological parameters, including ventilation defect percent (VDP), alveolar sleeve depth (h), apparent diffusion coefficient (ADC), total septal wall thickness (d), and ratio of xenon signal from red blood cells and interstitial tissue/plasma (RBC/TP). RESULTS: Significant differences were found in the measured VDP (p = 0.035), h (p = 0.003), and RBC/TP (p = 0.003) between the HY and AMC groups. Compared with the AMC group, higher VDP (p = 0.020) and d (p = 0.048) were found in the AS group; higher VDP (p < 0.001), d (p < 0.001) and ADC (p < 0.001), and lower h (p < 0.001) and RBC/TP (p < 0.001) were found in the COPD group. Moreover, significant differences were also found in the measured VDP (p < 0.001), h (p < 0.001), ADC (p < 0.001), d (p = 0.008), and RBC/TP (p = 0.032) between the AS and COPD groups. CONCLUSION: Our findings indicate that pulmonary structure and functional changes caused by aging, cigarette smoking, and COPD are various, and show a progressive deterioration with the accumulation of these risk factors, including cigarette smoking and COPD. CLINICAL RELEVANCE STATEMENT: Pathophysiological changes can be difficult to comprehensively understand due to limitations in common techniques and multifactorial etiologies. 129Xe MRI can demonstrate structural and functional changes caused by several common factors and can be used to better understand patients' underlying pathology. KEY POINTS: Standard techniques for assessing pathophysiological lung function changes, spirometry, and chest CT come with limitations. 129Xe MR demonstrated progressive deterioration with accumulation of the investigated risk factors, without these limitations. 129Xe MR can assess lung changes related to these risk factors to stage and evaluate the etiology of the disease.


Asunto(s)
Envejecimiento , Fumar Cigarrillos , Pulmón , Imagen por Resonancia Magnética , Enfermedad Pulmonar Obstructiva Crónica , Isótopos de Xenón , Humanos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Adulto , Imagen por Resonancia Magnética/métodos , Envejecimiento/fisiología , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Anciano , Estudios de Casos y Controles , Adulto Joven
6.
Eur Radiol ; 32(1): 702-713, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34255160

RESUMEN

OBJECTIVES: Multiple b-value gas diffusion-weighted MRI (DW-MRI) enables non-invasive and quantitative assessment of lung morphometry, but its long acquisition time is not well-tolerated by patients. We aimed to accelerate multiple b-value gas DW-MRI for lung morphometry using deep learning. METHODS: A deep cascade of residual dense network (DC-RDN) was developed to reconstruct high-quality DW images from highly undersampled k-space data. Hyperpolarized 129Xe lung ventilation images were acquired from 101 participants and were retrospectively collected to generate synthetic DW-MRI data to train the DC-RDN. Afterwards, the performance of the DC-RDN was evaluated on retrospectively and prospectively undersampled multiple b-value 129Xe MRI datasets. RESULTS: Each slice with size of 64 × 64 × 5 could be reconstructed within 7.2 ms. For the retrospective test data, the DC-RDN showed significant improvement on all quantitative metrics compared with the conventional reconstruction methods (p < 0.05). The apparent diffusion coefficient (ADC) and morphometry parameters were not significantly different between the fully sampled and DC-RDN reconstructed images (p > 0.05). For the prospectively accelerated acquisition, the required breath-holding time was reduced from 17.8 to 4.7 s with an acceleration factor of 4. Meanwhile, the prospectively reconstructed results showed good agreement with the fully sampled images, with a mean difference of -0.72% and -0.74% regarding global mean ADC and mean linear intercept (Lm) values. CONCLUSIONS: DC-RDN is effective in accelerating multiple b-value gas DW-MRI while maintaining accurate estimation of lung microstructural morphometry, facilitating the clinical potential of studying lung diseases with hyperpolarized DW-MRI. KEY POINTS: • The deep cascade of residual dense network allowed fast and high-quality reconstruction of multiple b-value gas diffusion-weighted MRI at an acceleration factor of 4. • The apparent diffusion coefficient and morphometry parameters were not significantly different between the fully sampled images and the reconstructed results (p > 0.05). • The required breath-holding time was reduced from 17.8 to 4.7 s and each slice with size of 64 × 64 × 5 could be reconstructed within 7.2 ms.


Asunto(s)
Aprendizaje Profundo , Enfermedad Pulmonar Obstructiva Crónica , Imagen de Difusión por Resonancia Magnética , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Retrospectivos , Isótopos de Xenón
7.
Eur Radiol ; 32(8): 5297-5307, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35184219

RESUMEN

OBJECTIVES: To visualize and quantitatively assess regional lung function of survivors of COVID-19 who were hospitalized using pulmonary free-breathing 1H MRI. METHODS: A total of 12 healthy volunteers and 27 COVID-19 survivors (62.4 ± 8.1 days between infection and image acquisition) were recruited in this prospective study and performed chest 1H MRI acquisitions with free tidal breathing. Then, conventional Fourier decomposition ventilation (FD-V) and global fractional ventilation (FVGlobal) were analyzed. Besides, a modified PREFUL (mPREFUL) method was developed to adapt to COVID-19 survivors and generate dynamic ventilation maps and parameters. All the ventilation maps and parameters were analyzed using Student's t-test. Pearson's correlation and a Bland-Altman plot between FVGlobal and mPREFUL were analyzed. RESULTS: There was no significant difference between COVID-19 and healthy groups regarding a static FD-V map (0.47 ± 0.12 vs 0.42 ± 0.08; p = .233). However, mPREFUL demonstrated lots of regional high ventilation areas (high ventilation percentage (HVP): 23.7% ± 10.6%) existed in survivors. This regional heterogeneity (i.e., HVP) in survivors was significantly higher than in healthy volunteers (p = .003). The survivors breathed deeper (flow-volume loop: 5375 ± 3978 vs 1688 ± 789; p = .005), and breathed more air in respiratory cycle (total amount: 62.6 ± 19.3 vs 37.3 ± 9.9; p < .001). Besides, mPREFUL showed both good Pearson's correlation (r = 0.74; p < .001) and Bland-Altman consistency (mean bias = -0.01) with FVGlobal. CONCLUSIONS: Dynamic ventilation imaging using pulmonary free-breathing 1H MRI found regional abnormity of dynamic ventilation function in COVID-19 survivors. KEY POINTS: • Pulmonary free-breathing1H MRI was used to visualize and quantitatively assess regional lung ventilation function of COVID-19 survivors. • Dynamic ventilation maps generated from 1H MRI were more sensitive to distinguish the COVID-19 and healthy groups (total air amount: 62.6 ± 19.3 vs 37.3 ± 9.9; p < .001), compared with static ventilation maps (FD-V value: 0.47 ± 0.12 vs 0.42 ± 0.08; p = .233). • COVID-19 survivors had larger regional heterogeneity (high ventilation percentage: 23.7% ± 10.6% vs 13.1% ± 7.9%; p = .003), and breathed deeper (flow-volume loop: 5375 ± 3978 vs 1688 ± 789; p = .005) than healthy volunteers.


Asunto(s)
COVID-19 , Protones , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Ventilación Pulmonar , Respiración , Sobrevivientes
8.
Opt Express ; 29(18): 28680-28691, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34614993

RESUMEN

We evaluated the alignment-to-orientation conversion (AOC) at the cesium D1 line to improve a nonlinear magneto-optical rotation (NMOR) optical atomic magnetometer's signal amplitude and bandwidth. For the 6 2S1/2 F = 3 → 6 2P1/2 F' = 4 transition, the AOC-related NMOR achieves a 1.7-fold enhancement in signal amplitude compared to the conventional NMOR, benefiting from narrow linewidth and ultraweak power broadening. Therefore, an effective amplitude-to-linewidth ratio is maintained in the high-laser-power region. This method is beneficial for detecting high-frequency magnetic signals in nuclear magnetic resonance and biomagnetism, as the NMOR magnetometer bandwidth increases with laser power.

9.
Magn Reson Med ; 84(2): 569-578, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31868253

RESUMEN

PURPOSE: To demonstrate the feasibility of 129 Xe MR in evaluating the pulmonary physiological changes caused by PM2.5 in animal models. METHODS: Six rats were treated with PM2.5 solution (16.2 mg/kg) by intratracheal instillation twice a week for 4 weeks, and another six rats treated with normal saline served as the control cohort. Pulmonary function tests, hyperpolarized 129 Xe multi-b diffusion-weighted imaging, and chemical shift saturation recovery MR spectroscopy were performed on all rats, and the pulmonary structure and functional parameters were obtained from hyperpolarized 129 Xe MR data. Additionally, histological analysis was performed on all rats to evaluate alveolar septal thickness. Statistical analysis of all the obtained parameters was performed using unpaired 2-tailed t tests. RESULTS: Compared with the control group, the measured exchange time constant increased from 11.74 ± 2.39 to 14.00 ± 2.84 ms (P < .05), and the septal wall thickness increased from 6.17 ± 0.48 to 6.74 ± 0.52 µm (P < .05) in the PM2.5 cohort by 129 Xe MR spectroscopy, which correlated well with that obtained using quantitative histology (increased from 5.52 ± 0.32 to 6.20 ± 0.36 µm). Additionally, the mean TP/GAS ratio increased from 0.828 ± 0.115 to 1.019 ± 0.140 in the PM2.5 cohort (P = .021). CONCLUSIONS: Hyperpolarized 129 Xe MR could quantify the changes in gas exchange physiology caused by PM2.5 , indicating that the technique has the potential to be a useful tool for evaluation of pulmonary injury caused by air pollution in the future.


Asunto(s)
Lesión Pulmonar , Isótopos de Xenón , Animales , Pulmón/diagnóstico por imagen , Lesión Pulmonar/diagnóstico por imagen , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Material Particulado , Ratas
10.
NMR Biomed ; 32(5): e4068, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30843292

RESUMEN

Pulmonary diseases usually result in changes of the blood-gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129 Xe MR via chemical shift saturation recovery (CSSR) and diffusion-weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood-gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath-hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g ), is proposed to evaluate the gas exchange function. Hyperpolarized 129 Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age-matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.


Asunto(s)
Contencion de la Respiración , Imagen por Resonancia Magnética , Intercambio Gaseoso Pulmonar , Isótopos de Xenón/química , Adulto , Anciano , Difusión , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Función Respiratoria , Tomografía Computarizada por Rayos X , Adulto Joven
11.
NMR Biomed ; 31(9): e3961, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30040165

RESUMEN

Hyperpolarized 129 Xe gas MR has been a powerful tool for evaluating pulmonary structure and function due to the extremely high enhancement in spin polarization, the good solubility in the pulmonary parenchyma, and the excellent chemical sensitivity to its surrounding environment. Generally, the quantitative structural and functional information of the lung are evaluated using hyperpolarized 129 Xe by employing the techniques of chemical shift saturation recovery (CSSR) and xenon polarization transfer contrast (XTC). Hyperpolarized 129 Xe chemical exchange saturation transfer (Hyper-CEST) is another method for quantifying the exchange information of hyperpolarized 129 Xe by using the exchange of xenon signals according to its different chemical shifts, and it has been widely used in biosensor studies in vitro. However, the feasibility of using hyperpolarized 129 Xe CEST to quantify the pulmonary gas exchange function in vivo is still unclear. In this study, the technique of CEST was used to quantitatively evaluate the gas exchange in the lung globally and regionally via hyperpolarized 129 Xe MRS and MRI, respectively. A new parameter, the pulmonary apparent gas exchange time constant (Tapp ), was defined, and it increased from 0.63 s to 0.95 s in chronic obstructive pulmonary disease (COPD) rats (induced by cigarette smoke and lipopolysaccharide exposure) versus the controls with a significant difference (P = 0.001). Additionally, the spatial distribution maps of Tapp in COPD rats' pulmonary parenchyma showed a regionally obvious increase compared with healthy rats. These results indicated that hyperpolarized 129 Xe CEST MR was an effective method for globally and regionally quantifying the pulmonary gas exchange function, which would be helpful in diagnosing lung diseases that are related to gas exchange, such as COPD.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Intercambio Gaseoso Pulmonar , Isótopos de Xenón/química , Animales , Pulmón/diagnóstico por imagen , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/patología , Ratas Sprague-Dawley , Procesamiento de Señales Asistido por Computador
12.
Magn Reson Med ; 78(5): 1891-1899, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28026061

RESUMEN

PURPOSE: To demonstrate that hyperpolarized (HP) xenon diffusion kurtosis imaging (DKI) is able to detect smoke-induced pulmonary lesions in rat models. METHODS: Multi-b DKI with hyperpolarized xenon was used for the first time in five smoke-exposed rats and five healthy rats. Additionally, DKI with b values of up to 80 s/cm2 were used in two healthy rats to probe the critical b value (a limit beyond which the DKI cannot describe the non-Gaussian diffusion). RESULTS: The mean apparent diffusion coefficient (Dapp ) and diffusion kurtosis (Kapp ) extracted by the DKI model revealed significant changes in the smoke-exposed rats compared with those in the control group (P = 0.027 and 0.039, respectively), exhibiting strong correlations with mean linear intercept (Lm ) from the histology. Although the maximum b value was increased to 80 s/cm2 , the DKI could still describe the non-Gaussian diffusion (R2 > 0.97). CONCLUSION: DKI with hyperpolarized xenon exhibited sensitivity in the detection of pulmonary lesions induced by smoke, including moderate emphysema and small airway diseases. The critical b value was rarely exceeded in DKI of the lungs due to the limited gradient strength of the MRI scanner used in our study. Magn Reson Med 78:1891-1899, 2016. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/diagnóstico por imagen , Humo/efectos adversos , Isótopos de Xenón/química , Algoritmos , Animales , Fumar Cigarrillos , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar
13.
Magn Reson Med ; 76(2): 408-16, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26400753

RESUMEN

PURPOSE: To demonstrate the feasibility of quantitative and comprehensive global evaluation of pulmonary function and microstructural changes in rats with radiation-induced lung injury (RILI) using hyperpolarized xenon MR. METHODS: Dissolved xenon spectra were dynamically acquired using a modified chemical shift saturation recovery pulse sequence in five rats with RILI (bilaterally exposed by 6-MV x-ray with a dose of 14 Gy 3 mo. prior to MR experiments) and five healthy rats. The dissolved xenon signals were quantitatively analyzed, and the pulmonary physiological parameters were extracted with the model of xenon exchange. RESULTS: The obtained pulmonary physiological parameters and the ratio of (129) Xe signal in red blood cells (RBCs) versus barrier showed a significant difference between the groups. In RILI rats versus controls, the exchange time increased from 44.5 to 112 ms, the pulmonary capillary transit time increased from 0.51 to 1.48 s, and the ratio of (129) Xe spectroscopic signal in RBCs versus barrier increased from 0.294 to 0.484. CONCLUSION: Hyperpolarized xenon MR is effective for quantitative and comprehensive global evaluation of pulmonary function and structural changes without the use of radiation. This may open the door for its use in the diagnosis of lung diseases that are related to gas exchange. Magn Reson Med 76:408-416, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neumonitis por Radiación/diagnóstico por imagen , Neumonitis por Radiación/patología , Pruebas de Función Respiratoria/métodos , Isótopos de Xenón , Administración por Inhalación , Algoritmos , Animales , Medios de Contraste , Estudios de Factibilidad , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Opt Express ; 23(14): 17988-94, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26191858

RESUMEN

We report on a 795 nm atomic filter consisting of a stimulated Raman gain amplifier together with normal Faraday anomalous dispersion optical filtering (FADOF) at the rubidium D1 line. The filter is operated with a single transmission peak. The gain of the filter's transmission light signal is enhanced up to 85-fold compared to case operating without a stimulated Raman transition. Based on atomic coherence, the filter's minimum transmission bandwidth is less than 22 MHz. In each filtering channel, the signal light's frequency can be tuned by changing the detuning of the coupling light. Such a filter with stimulated Raman gain is more efficient in extracting weak signals in the presence of a strong light background compared with the normal FADOF. This expands the range of potential applications in optical communications and lidar technology. This filtering method can also be extended to the lines of other atoms.

15.
Adv Healthc Mater ; : e2402915, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39440641

RESUMEN

Nature often provides invaluable insights into technological innovation and the construction of nanomaterials. Inspired by the pitaya fruit's strategy of wrapping seeds within its pulp to enhance seed survival, a unique nanocomposite based on metal-organic framework (MOF)-encapsulated CuS nanoparticles (NPs) is developed. This design effectively addresses the challenge of short retention time afforded by CuS NPs for therapeutic and imaging purposes. The MOF acts as the "pitaya pulp" protecting the internal CuS NPs ("pitaya seeds"), thereby increasing their retention time in vivo. This system exhibits triple-enzyme-mimicking activities and is proposed for application in photoacoustic and magnetic resonance imaging-guided therapies, including chemodynamic therapy, photothermal therapy, and cuproptosis-related therapy. The exceptional enzyme-mimicking activities of superoxide dismutase, catalase, and peroxidase not only produce oxygen to alleviate hypoxia but also generate a reactive oxygen species (ROS) storm for effective tumor destruction. By combining these multienzymatic properties, superior photothermal performance, and Cu-induced cuproptosis, nanozyme-treated mice exhibited an 84% inhibition of tumor growth-approximately double the effect observed in mice treated with CuS NPs alone. This study presents a smart strategy for integrating imaging with therapeutic modalities, achieving exceptional outcomes for precise imaging-guided tumor therapy.

16.
Med Phys ; 51(1): 378-393, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37401205

RESUMEN

BACKGROUND: Hyperpolarized (HP) gas MRI enables the clear visualization of lung structure and function. Clinically relevant biomarkers, such as ventilated defect percentage (VDP) derived from this modality can quantify lung ventilation function. However, long imaging time leads to image quality degradation and causes discomfort to the patients. Although accelerating MRI by undersampling k-space data is available, accurate reconstruction and segmentation of lung images are quite challenging at high acceleration factors. PURPOSE: To simultaneously improve the performance of reconstruction and segmentation of pulmonary gas MRI at high acceleration factors by effectively utilizing the complementary information in different tasks. METHODS: A complementation-reinforced network is proposed, which takes the undersampled images as input and outputs both the reconstructed images and the segmentation results of lung ventilation defects. The proposed network comprises a reconstruction branch and a segmentation branch. To effectively exploit the complementary information, several strategies are designed in the proposed network. Firstly, both branches adopt the encoder-decoder architecture, and their encoders are designed to share convolutional weights for facilitating knowledge transfer. Secondly, a designed feature-selecting block discriminately feeds shared features into decoders of both branches, which can adaptively pick suitable features for each task. Thirdly, the segmentation branch incorporates the lung mask obtained from the reconstructed images to enhance the accuracy of the segmentation results. Lastly, the proposed network is optimized by a tailored loss function that efficiently combines and balances these two tasks, in order to achieve mutual benefits. RESULTS: Experimental results on the pulmonary HP 129 Xe MRI dataset (including 43 healthy subjects and 42 patients) show that the proposed network outperforms state-of-the-art methods at high acceleration factors (4, 5, and 6). The peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and Dice score of the proposed network are enhanced to 30.89, 0.875, and 0.892, respectively. Additionally, the VDP obtained from the proposed network has good correlations with that obtained from fully sampled images (r = 0.984). At the highest acceleration factor of 6, the proposed network promotes PSNR, SSIM, and Dice score by 7.79%, 5.39%, and 9.52%, respectively, in comparison to the single-task models. CONCLUSION: The proposed method effectively enhances the reconstruction and segmentation performance at high acceleration factors up to 6. It facilitates fast and high-quality lung imaging and segmentation, and provides valuable support in the clinical diagnosis of lung diseases.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Pulmón , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Respiración , Relación Señal-Ruido
17.
IEEE Trans Med Imaging ; 43(5): 1828-1840, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38194397

RESUMEN

Magnetic resonance imaging (MRI) using hyperpolarized noble gases provides a way to visualize the structure and function of human lung, but the long imaging time limits its broad research and clinical applications. Deep learning has demonstrated great potential for accelerating MRI by reconstructing images from undersampled data. However, most existing deep convolutional neural networks (CNN) directly apply square convolution to k-space data without considering the inherent properties of k-space sampling, limiting k-space learning efficiency and image reconstruction quality. In this work, we propose an encoding enhanced (EN2) complex CNN for highly undersampled pulmonary MRI reconstruction. EN2 complex CNN employs convolution along either the frequency or phase-encoding direction, resembling the mechanisms of k-space sampling, to maximize the utilization of the encoding correlation and integrity within a row or column of k-space. We also employ complex convolution to learn rich representations from the complex k-space data. In addition, we develop a feature-strengthened modularized unit to further boost the reconstruction performance. Experiments demonstrate that our approach can accurately reconstruct hyperpolarized 129Xe and 1H lung MRI from 6-fold undersampled k-space data and provide lung function measurements with minimal biases compared with fully sampled images. These results demonstrate the effectiveness of the proposed algorithmic components and indicate that the proposed approach could be used for accelerated pulmonary MRI in research and clinical lung disease patient care.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Pulmón , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Fantasmas de Imagen , Aprendizaje Profundo , Isótopos de Xenón/química
18.
Med Phys ; 50(2): 867-878, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36196039

RESUMEN

BACKGROUND: Hyperpolarized (HP) 129 Xe multiple b-values diffusion-weighted magnetic resonance imaging (DW-MRI) has been widely used for quantifying pulmonary microstructural morphometry. However, the technique requires long acquisition times, making it hard to apply in patients with severe pulmonary diseases, who cannot sustain long breath holds. PURPOSE: To develop and evaluate the technique of variable-sampling-ratio compressed sensing (VCS) patterns for accelerating HP 129 Xe multiple b-values DW-MRI in humans. METHODS: Optimal variable sampling ratios and corresponding k-space undersampling patterns for each b-value were obtained by retrospective simulations based on the fully sampled (FS) DW-MRI dataset acquired from six young healthy volunteers. Then, the FS datasets were retrospectively undersampled using both VCS patterns and conventional compressed sensing (CS) pattern with a similar average acceleration factor. The quality of reconstructed images with retrospective VCS (rVCS) and CS (rCS) datasets were quantified using mean absolute error (MAE) and structural similarity (SSIM). Pulmonary morphometric parameters were also evaluated between rVCS and FS datasets. In addition, prospective VCS multiple b-values 129 Xe DW-MRI datasets were acquired from 14 cigarette smokers and 13 age-matched healthy volunteers. The differences of lung morphological parameters obtained with the proposed method were compared between the groups using independent samples t-test. Pearson correlation coefficient was also utilized for evaluating the correlation of the pulmonary physiological parameters obtained with VCS DW-MRI and pulmonary function tests. RESULTS: Lower MAE and higher SSIM values were found in the reconstructed images with rVCS measurement when compared to those using conventional rCS measurement. The details and quality of the images obtained with rVCS and FS measurements were found to be comparable. The mean values of the morphological parameters derived from rVCS and FS datasets showed no significant differences (p > 0.05), and the mean differences of measured acinar duct radius, mean linear intercept, surface-to-volume ratio, and apparent diffusion coefficient with cylinder model were -0.87%, -2.42%, 2.04%, and -0.50%, respectively. By using the VCS technique, significant differences were delineated between the pulmonary morphometric parameters of healthy volunteers and cigarette smokers (p < 0.001), while the acquisition time was reduced by four times. CONCLUSION: A fourfold reduction in acquisition time was achieved using the proposed VCS method while preserving good image quality. Our preliminary results demonstrated that the proposed method can be used for evaluating pulmonary injuries caused by cigarette smoking and may prove to be helpful in diagnosing lung diseases in clinical practice.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Estudios Retrospectivos , Enfermedad Pulmonar Obstructiva Crónica/patología , Estudios Prospectivos , Isótopos de Xenón , Pulmón/fisiología , Imagen por Resonancia Magnética/métodos
19.
Magn Reson Lett ; 1(1): 2-10, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35673615

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19) has been a great burden for the healthcare system in many countries because of its high transmissibility, severity, and fatality. Chest radiography and computed tomography (CT) play a vital role in the diagnosis, detection of complications, and prognostication of COVID-19. Additionally, magnetic resonance imaging (MRI), especially multi-nuclei MRI, is another important imaging technique for disease diagnosis because of its good soft tissue contrast and the ability to conduct structural and functional imaging, which has also been used to evaluate COVID-19-related organ injuries in previous studies. Herein, we briefly reviewed the recent research on multi-nuclei MRI for evaluating injuries caused by COVID-19 and the clinical 1H MRI techniques and their applications for assessing injuries in lungs, brain, and heart. Moreover, the emerging hyperpolarized 129Xe gas MRI and its applications in the evaluation of pulmonary structures and functional abnormalities caused by COVID-19 were also reviewed.

20.
Sci Adv ; 7(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33219111

RESUMEN

The recovery process of COVID-19 patients is unclear. Some recovered patients complain of continued shortness of breath. Vasculopathy has been reported in COVID-19, stressing the importance of probing pulmonary microstructure and function at the alveolar-capillary interface. While computed tomography (CT) detects structural abnormalities, little is known about the impact of disease on lung function. 129Xe magnetic resonance imaging (MRI) is a technique uniquely capable of assessing ventilation, microstructure, and gas exchange. Using 129Xe MRI, we found that COVID-19 patients show a higher rate of ventilation defects (5.9% versus 3.7%), unchanged microstructure, and longer gas-blood exchange time (43.5 ms versus 32.5 ms) compared with healthy individuals. These findings suggest that regional ventilation and alveolar airspace dimensions are relatively normal around the time of discharge, while gas-blood exchange function is diminished. This study establishes the feasibility of localized lung function measurements in COVID-19 patients and their potential usefulness as a supplement to structural imaging.


Asunto(s)
COVID-19/diagnóstico por imagen , COVID-19/fisiopatología , Pulmón/fisiopatología , Intercambio Gaseoso Pulmonar , Adulto , Femenino , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Alta del Paciente , Pruebas de Función Respiratoria , Tomografía Computarizada por Rayos X , Isótopos de Xenón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA