RESUMEN
Graphene/polydopamine aerogels (GPDXAG, where X represents the weight ratio of DA·HCl to GO) were prepared by the chemical reduction of graphene oxide (GO) using dopamine (DA) and l-ascorbic acid as reducing agents. During the gelation process, DA was polymerized to form polydopamine (PDA). The introduction of PDA in the gelation of aerogels led to a deeper reduction of GO and stronger interactions between graphene nanosheets forced by covalent cross-linking and noncovalent bonding including π-π stacking and hydrogen bonding. The weight ratio of DA·HCl to GO influencing the formation and morphology of GPDXAG was explored. With the increasing content of DA in gelation, the reduction of GO and the cross-linking degree of graphene nanosheets were enhanced, and the resulting GPDXAG had a more regular pore distribution. Additionally, introducing PDA into GPDXAG improved its hydrophobicity because of the adhesion of PDA to a network of aerogels. GPDXAG exhibited a higher removal efficiency for organic pollutants than the controlled graphene aerogels (GAG). Specifically, the adsorption capacity of GPDXAG for organic solvents was superior to that of GAG, and organic solvent was completely separated from the oil/water mixture by GPDXAG. The equilibrium adsorption capacity of GPDXAG for malachite green (MG) was measured to be 768.50 mg/g, which was higher than that for methyl orange (MO). In MG/MO mixed solutions, aerogels had obvious adsorption selectivity for the cationic dye. The adsorption mechanism of aerogels for MG was also discussed by simulating adsorption kinetic models and adsorption isothermal models.
RESUMEN
Metal materials are susceptible to the influence of environmental media, and chemical or electrochemical multiphase reactions occur on the metal surface, resulting in the corrosion of metal materials, which can directly damage the geometry and reduce the physical properties of metal materials. This corrosion damage can seriously affect the long-term use of metal materials in marine equipment and the aerospace industry, and other fields. Inspired by the special microstructure and slippery properties of natural nepenthes intine, researchers have prepared slippery liquid-infused porous surfaces (SLIPS) with a stable continuous lubricant layer by injecting low-surface-energy lubricants into a substrate with a micro/nano-porous structure. This surface has excellent hydrophobicity, low friction, non-adhesiveness, and self-healing properties. The broad application prospects of SLIPS in the fields of anti-corrosion, anti-icing, anti-bacteria, and anti-fouling have made it a hot research topic directing the study of biomimetic materials at present. However, SLIPS are susceptible to environmental shear forces, such as ocean flow or extraneous fluids, resulting in destruction of the porous structure and loss of surface lubricant, thereby depriving SLIPS of the ability to protect metals from corrosion. Therefore, it is important for metal corrosion protection to find ways to improve the stability and extend the service life of SLIPS. Over the last several years, research into and development of SLIPS have come a long way. Herein, a summary of available reports on SLIPS is given in terms of design principles and their performance characteristics, the construction of rough/porous substrate structures, the choice of low-surface-energy modifiers and lubricants, and lubricant infusion methods. Ways of constructing different substrate structures and the characteristics, advantages, and disadvantages of choosing various modifiers and lubricants to prepare the surface are compared. Finally, a comprehensive summary and outlook of SLIPS with anti-corrosion properties are provided. We are convinced that a comprehensive review of SLIPS will provide important guidance and strong reference for the design and preparation of green and economical SLIPS with anti-corrosion capabilities in the future.
RESUMEN
Superoxide dismutase (SOD) is a crucial metal-containing enzyme that plays a vital role in catalyzing the dismutation of superoxide anions, converting them into molecular oxygen and hydrogen peroxide, essential for enhancing plant stress tolerance. We identified 8 SOD genes (4 CSODs, 2 FSODs, and 2 MSODs) in cassava. Bioinformatics analyses provided insights into chromosomal location, phylogenetic relationships, gene structure, conserved motifs, and gene ontology annotations. MeSOD genes were classified into two groups through phylogenetic analysis, revealing evolutionary connections. Promoters of these genes harbored stress-related cis-elements. Duplication analysis indicated the functional significance of MeCSOD2/MeCSOD4 and MeMSOD1/MeMSOD2. Through qRT-PCR, MeCSOD2 responded to salt stress, MeMSOD2 to drought, and cassava bacterial blight. Silencing MeMSOD2 increased XpmCHN11 virulence, indicating MeMSOD2 is essential for cassava's defense against XpmCHN11 infection. These findings enhance our understanding of the SOD gene family's role in cassava and contribute to strategies for stress tolerance improvement.