Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mar Drugs ; 21(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37888451

RESUMEN

The objective of this study was to isolate and characterize collagen and angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields of 4.27 ± 0.22% and 9.54 ± 0.51%, respectively, were extracted from monkfish swim bladders using acid and enzyme methods. The ASC-M and PSC-M contained Gly (325.2 and 314.9 residues/1000 residues, respectively) as the major amino acid, but they had low imino acid content (192.5 and 188.6 residues/1000 residues, respectively) in comparison with collagen from calf skins (CSC) (216.6 residues/1000 residues). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and ultraviolet (UV) absorption spectrums of ASC-M and PSC-M illustrated that they were mainly composed of type I collagen. Subsequently, three ACEi peptides were isolated from a PSC-M hydrolysate prepared via a double-enzyme system (alcalase + neutrase) and identified as SEGPK (MHP6), FDGPY (MHP7) and SPGPW (MHP9), with molecular weights of 516.5, 597.6 and 542.6 Da, respectively. SEGPK, FDGPY and SPGPW displayed remarkable anti-ACE activity, with IC50 values of 0.63, 0.94 and 0.71 mg/mL, respectively. Additionally, a molecular docking assay demonstrated that the affinities of SEGPK, FDGPY and SPGPW with ACE were -7.3, -10.9 and -9.4 kcal/mol, respectively. The remarkable ACEi activity of SEGPK, FDGPY and SPGPW was due to their connection with the active pockets and/or sites of ACE via hydrogen bonding, hydrophobic interaction and electrostatic force. Moreover, SEGPK, FDGPY and SPGPW could protect HUVECs by controlling levels of nitric oxide (NO) and endothelin-1 (ET-1). Therefore, this work provides an effective means for the preparation of collagens and novel ACEi peptides from monkfish swim bladders, and the prepared ACEi peptides, including SEGPK, FDGPY and SPGPW, could serve as natural functional components in the development of health care products to control hypertension.


Asunto(s)
Colágeno , Peptidil-Dipeptidasa A , Animales , Simulación del Acoplamiento Molecular , Colágeno/química , Peces/metabolismo , Péptidos/farmacología , Péptidos/química , Ácidos/química , Angiotensinas
2.
Mar Drugs ; 20(3)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35323475

RESUMEN

To prepare bioactive peptides with high angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) activity, Alcalase was selected from five kinds of protease for hydrolyzing Skipjack tuna (Katsuwonus pelamis) muscle, and its best hydrolysis conditions were optimized using single factor and response surface experiments. Then, the high ACEi protein hydrolysate (TMPH) of skipjack tuna muscle was prepared using Alcalase under the optimum conditions of enzyme dose 2.3%, enzymolysis temperature 56.2 °C, and pH 9.4, and its ACEi activity reached 72.71% at 1.0 mg/mL. Subsequently, six novel ACEi peptides were prepared from TMPH using ultrafiltration and chromatography methods and were identified as Ser-Pro (SP), Val-Asp-Arg-Tyr-Phe (VDRYF), Val-His-Gly-Val-Val (VHGVV), Tyr-Glu (YE), Phe-Glu-Met (FEM), and Phe-Trp-Arg-Val (FWRV), with molecular weights of 202.3, 698.9, 509.7, 310.4, 425.6, and 606.8 Da, respectively. SP and VDRYF displayed noticeable ACEi activity, with IC50 values of 0.06 ± 0.01 and 0.28 ± 0.03 mg/mL, respectively. Molecular docking analysis illustrated that the high ACEi activity of SP and VDRYF was attributed to effective interaction with the active sites/pockets of ACE by hydrogen bonding, electrostatic force, and hydrophobic interaction. Furthermore, SP and VDRYF could significantly up-regulate nitric oxide (NO) production and down-regulate endothelin-1 (ET-1) secretion in HUVECs after 24 h treatment, but also abolish the negative effect of 0.5 µM norepinephrine (NE) on the generation of NO and ET-1. Therefore, ACEi peptides derived from skipjack tuna (K. pelamis) muscle, especially SP and VDRYF, are beneficial components for functional food against hypertension and cardiovascular diseases.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Músculo Esquelético/química , Péptidos , Atún , Secuencia de Aminoácidos , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Endotelina-1/metabolismo , Alimentos Funcionales , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hidrólisis , Simulación del Acoplamiento Molecular , Óxido Nítrico/metabolismo , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/farmacología , Hidrolisados de Proteína/química , Subtilisinas/química
3.
Mar Drugs ; 18(3)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164197

RESUMEN

In the work, defatted muscle proteins of monkfish (Lophius litulon) were separately hydrolyzed by pepsin, trypsin, and in vitro gastrointestinal (GI) digestion methods, and antioxidant peptides were isolated from proteins hydrolysate of monkfish muscle using ultrafiltration and chromatography processes. The antioxidant activities of isolated peptides were evaluated using radical scavenging and lipid peroxidation assays and H2O2-induced model of HepG2 cells. In which, the cell viability, reactive oxygen species (ROS) content, and antioxidant enzymes and malondialdehyde (MDA) levels were measured for evaluating the protective extent on HepG2 cells damaged by H2O2. The results indicated that the hydrolysate (MPTH) prepared using in vitro GI digestion method showed the highest degree of hydrolysis (27.24 ± 1.57%) and scavenging activity on a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (44.54 ± 3.12%) and hydroxyl radical (41.32 ± 2.73%) at the concentration of 5 mg protein/mL among the three hydrolysates. Subsequently, thirteen antioxidant peptides (MMP-1 to MMP-13) were isolated from MPTH. According to their DPPH radical and hydroxyl radical scavenging activity, three peptides with the highest antioxidant activity were selected and identified as EDIVCW (MMP-4), MEPVW (MMP-7), and YWDAW (MMP-12) with molecular weights of 763.82, 660.75, and 739.75 Da, respectively. EDIVCW, MEPVW, and YWDAW showed high scavenging activities on DPPH radical (EC50 0.39, 0.62, and 0.51 mg/mL, respectively), hydroxyl radical (EC50 0.61, 0.38, and 0.32 mg/mL, respectively), and superoxide anion radical (EC50 0.76, 0.94, 0.48 mg/mL, respectively). EDIVCW and YWDAW showed equivalent inhibiting ability on lipid peroxidation with glutathione in the linoleic acid model system. Moreover, EDIVCW, MEPVW, and YWDAW had no cytotoxicity to HepG2 cells at the concentration of 100.0 µM and could concentration-dependently protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These present results indicated that the protein hydrolysate and isolated antioxidant peptides from monkfish muscle, especially YWDAW could serve as powerful antioxidants applied in the treatment of some liver diseases and healthcare products associated with oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Peces , Músculo Esquelético/química , Péptidos/farmacología , Hidrolisados de Proteína/farmacología , Animales , Antioxidantes/química , Supervivencia Celular/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Células Hep G2 , Humanos , Peróxido de Hidrógeno/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Metaloproteinasas de la Matriz/química , Péptidos/química , Sustancias Protectoras/farmacología , Hidrolisados de Proteína/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
4.
Mar Drugs ; 18(3)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168851

RESUMEN

Bioactive peptides from fish collagens with antioxidant properties have become a topic of great interest for health, food, and processing/preservation industries. To explore the high-value utilized way of scales produced during the fish processing, collagen hydrolysates of redlip croaker (Pseudosciaena polyactis) scales were prepared using six different proteases, and the hydrolysate (RSCH) prepared using neutrase showed the highest degree of hydrolysis (21.36 ± 1.18%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging activity (30.97 ± 1.56%) among the six hydrolysates. Subsequently, six antioxidant peptides were purified from RSCH using membrane ultrafiltration and serial chromatography, and their amino acid sequences were identified as DGPEGR, GPEGPMGLE, EGPFGPEG, YGPDGPTG, GFIGPTE, and IGPLGA with molecular masses of 629.61, 885.95, 788.96, 762.75, 733.80, and 526.61 Da, respectively. Among six collagen peptides, GPEGPMGLE, EGPFGPEG, and GFIGPTE exhibited the strongest scavenging activities on DPPH· radical (EC50 0.59, 0.37, and 0.45 mg/mL), hydroxyl radical (EC50 0.45, 0.33, and 0.32 mg/mL), and superoxide anion radical (EC50 0.62, 0.47, and 0.74 mg/mL). GPEGPMGLE, EGPFGPEG, and GFIGPTE showed high inhibiting ability on lipid peroxidation in a linoleic acid model system and protective activities on oxidation-damaged DNA. More importantly, GPEGPMGLE, EGPFGPEG, and GFIGPTE could protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These results suggested that six collagen peptides (RCP1-RCP6), especially GPEGPMGLE, EGPFGPEG, and GFIGPTE, might serve as potential antioxidants applied in nutraceutical and pharmaceutical products.


Asunto(s)
Antioxidantes/farmacología , Colágeno/química , Peróxido de Hidrógeno/farmacología , Péptidos/farmacología , Perciformes , Hidrolisados de Proteína/farmacología , Secuencia de Aminoácidos , Animales , Antioxidantes/química , Supervivencia Celular/efectos de los fármacos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Células Hep G2 , Humanos , Peroxidación de Lípido/efectos de los fármacos , Péptidos/química , Hidrolisados de Proteína/química
5.
Mar Drugs ; 17(4)2019 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-31013895

RESUMEN

A previous report indicated that collagen hydrolysate fraction (F7) from Spanish mackerel (Scomberomorous niphonius) skins showed high reducing power and radical scavenging activities on 2,2-Diphenyl-1-picrylhydrazyl (DPPH) (EC50 value of 1.57 mg/mL) and hydroxyl (EC50 value of 1.20 mg/mL). In this work, eight peptides were isolated from F7 and identified as Gly-Pro-Tyr (GPY, 335.31 Da), Gly-Pro-Thr-Gly-Glu (GPTGE, 459.47 Da), Pro-Phe-Gly-Pro-Asp (PFGPD, 531.52 Da), Gly-Pro-Thr-Gly-Ala-Lys (GPTGAKG, 586.65 Da), Pro-Tyr-Gly-Ala-Lys-Gly (PYGAKG, 591.69 Da), Gly-Ala-Thr-Gly-Pro-Gln-Gly (GATGPQG, 586.61 Da), Gly-Pro-Phe-Gly-Pro-Met (GPFGPM, 604.73 Da), and Tyr-Gly-Pro-Met (YGPM, 466.50 Da), respectively. Among them, PFGPD, PYGAKG, and YGPM exhibited strong radical scavenging activities on DPPH (EC50 values of 0.80, 3.02, and 0.72 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), hydroxyl (EC50 values of 0.81, 0.66, and 0.88 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), superoxide anion (EC50 values of 0.91, 0.80, and 0.73 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) cation (EC50 values of 0.86, 1.07, and 0.82 mg/mL for PFGPD, PYGAKG, and YGPM, respectively) in a positive concentration-activity relationship. Furthermore, PFGPD, PYGAKG, and YGPM could effectively reduce Fe3+ to Fe2+ and inhibit lipid peroxidation. Hence, eight collagen peptides from hydrolysate of Spanish mackerel skins might be served as antioxidant candidates for various industrial applications.


Asunto(s)
Antioxidantes/química , Colágeno/química , Colágeno/farmacología , Péptidos/química , Péptidos/farmacología , Perciformes/metabolismo , Piel/química , Animales , Antioxidantes/farmacología , Peroxidación de Lípido/efectos de los fármacos , Hidrolisados de Proteína/metabolismo , Superóxidos/metabolismo
6.
Mar Drugs ; 17(5)2019 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-31035632

RESUMEN

In this report, protein hydrolysate (TGH) of blood cockle (Tegillarca granosa) was prepared using a two-enzyme system (Alcalase treatment for 1.5 h following Neutrase treatment for 1.5 h). Subsequently, six antioxidant peptides were isolated from TGH using ultrafiltration and chromatography methods, and their amino acid sequences were identified as EPLSD, WLDPDG, MDLFTE, WPPD, EPVV, and CYIE with molecular weights of 559.55, 701.69, 754.81, 513.50, 442.48, and 526.57 Da, respectively. In which, MDLFTE and WPPD exhibited strong scavenging activities on DPPH radical (EC50 values of 0.53 ± 0.02 and 0.36 ± 0.02 mg/mL, respectively), hydroxy radical (EC50 values of 0.47 ± 0.03 and 0.38 ± 0.04 mg/mL, respectively), superoxide anion radical (EC50 values of 0.75 ± 0.04 and 0.46 ± 0.05 mg/mL, respectively), and ABTS cation radical (EC50 values of 0.96 ± 0.08 and 0.54 ± 0.03 mg/mL, respectively). Moreover, MDLFTE and WPPD showed high inhibiting ability on lipid peroxidation. However, MDLFTE and WPPD were unstable and could not retain strong antioxidant activity at high temperatures (>80 °C for 0.5 h), basic pH conditions (pH > 9 for 2.5 h), or during simulated GI digestion. In addition, the effect of simulated gastrointestinal digestion on TGP4 was significantly weaker than that on MDLFTE. Therefore, MDLFTE and WPPD may be more suitable for serving as nutraceutical candidates in isolated forms than as food ingredient candidates in functional foods and products.


Asunto(s)
Organismos Acuáticos , Bivalvos , Depuradores de Radicales Libres/farmacología , Péptidos/farmacología , Hidrolisados de Proteína/química , Secuencia de Aminoácidos , Animales , Suplementos Dietéticos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Alimentos Funcionales , Calor , Concentración de Iones de Hidrógeno , Peroxidación de Lípido/efectos de los fármacos , Péptidos/química , Péptidos/aislamiento & purificación , Hidrolisados de Proteína/aislamiento & purificación
7.
Mar Drugs ; 17(2)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30678362

RESUMEN

In China, a large amount of fish bones are produced during the processing of tuna cans production. For full use of those by-products, gelatin (STB-G) with a yield of 6.37 ± 0.64% was extracted from skipjack tuna (Katsuwonus pelamis) bone using water at 60 °C for 8 h. Amino acid analysis showed that STB-G contained Gly (340.3 residues/1000 residues) as the major amino acid and its imino acid content was 177.3 residues/1000 residues. Amino acid composition, SDS-PAGE, and Fourier transform infrared (FTIR) spectrum investigations confirmed that the physicochemical properties of STB-G were similar to those of type I collagen from skipjack tuna bone (STB-C), but partial high molecular weight components of STB-G were degraded during the extraction process, which induced that the gelatin was easier to be hydrolyzed by protease than mammalian gelatins and was suitable for preparation of hydrolysate. Therefore, STB-G was hydrolyzed under in vitro gastrointestinal digestion (pepsin-trypsin system) and five antioxidant peptides were purified from the resulted hydrolysate (STB-GH) and identified as GPDGR, GADIVA, GAPGPQMV, AGPK, and GAEGFIF, respectively. Among the gelatin hydrolysate, fractions, and isolated peptides, GADIVA and GAEGFIF exhibited the strongest scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (EC50 0.57 and 0.30 mg/mL), hydroxyl radical (EC50 0.25 and 0.32 mg/mL), superoxide anion radical (EC50 0.52 and 0.48 mg/mL), and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical (EC50 0.41 and 0.21 mg/mL). Moreover, GADIVA and GAEGFIF showed a high inhibiting ability on lipid peroxidation in a linoleic acid model system. The strong activities of five isolated peptides profited by their small molecular sizes and the antioxidant amino acid residues in their sequences. These results suggested that five isolated peptides (STP1⁻STP5), especially GADIVA and GAEGFIF, might serve as potential antioxidants applied in health food industries.


Asunto(s)
Antioxidantes/química , Huesos/química , Gelatina/química , Péptidos/química , Hidrolisados de Proteína/química , Atún , Aminoácidos/química , Animales , Compuestos de Bifenilo , Hidrólisis , Radical Hidroxilo , Picratos , Espectroscopía Infrarroja por Transformada de Fourier
8.
Mar Drugs ; 17(10)2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31623339

RESUMEN

For full use of fish by-products, scale gelatin (TG) and antioxidant peptides (APs) of skipjack tuna (Katsuwonus pelamis) were prepared, and their properties were characterized using an amino acid analyzer, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), electrospray ionization mass spectrometers (ESI-MS), and radical scavenging assays. The results indicate that TG with a yield of 3.46 ± 0.27% contained Gly (327.9 ± 5.2 residues/1000 residues) as the major amino acid and its imino acid content was 196.1 residues/1000 residues. The structure of TG was more unstable than that of type I collagen from scales of skipjack tuna (TC) and TG was more suitable for preparation of hydrolysate by protease than mammalian gelatins. Therefore, TG was separately hydrolyzed under five proteases (pepsin, papain, trypsin, neutrase, and alcalase) and ten APs (TGP1-TGP10) were isolated from the alcalase-hydrolysate. Among them, TGP5, TGP7, and TGP9 with high antioxidant activity were identified as His-Gly-Pro-Hyp-Gly-Glu (TGP5), Asp-Gly-Pro-Lys-Gly-His (TGP7) and Met-Leu-Gly-Pro-Phe-Gly-Pro-Ser (TGP9), respectively. Furthermore, TGP5, TGP7, and TGP9 exhibited a high radical scavenging capability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (EC50 values of 1.34, 0.54, and 0.67 mg/mL, respectively), hydroxyl radical (EC50 values of 1.03, 0.41, and 0.74 mg/mL, respectively), and superoxide anion radical (EC50 values of 1.19, 0.71, and 1.59 mg/mL, respectively). These results suggest that three APs (TGP5, TGP7, and TGP9), especially TGP7, have a strong antioxidant activity and could act as potential antioxidant ingredients applied in functional products.


Asunto(s)
Antioxidantes/farmacología , Gelatina/farmacología , Péptidos/farmacología , Atún/metabolismo , Aminoácidos/metabolismo , Animales , Colágeno Tipo I/metabolismo , Depuradores de Radicales Libres/farmacología , Hidrólisis/efectos de los fármacos , Radical Hidroxilo/metabolismo , Superóxidos/metabolismo
9.
Mar Drugs ; 17(9)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547415

RESUMEN

For the full use of Spanish mackerel (Scomberomorous niphonius) muscle to produce antioxidant peptides, the proteins of Spanish mackerel muscle were separately hydrolyzed under five kinds of enzymes and in vitro gastrointestinal digestion, and antioxidant peptides were isolated from the protein hydrolysate using ultrafiltration and multiple chromatography methods. The results showed that the hydrolysate (SMPH) prepared using in vitro GI digestion showed the highest degree of hydrolysis (27.45 ± 1.76%) and DPPH radical scavenging activity (52.58 ± 2.68%) at the concentration of 10 mg protein/mL among the six protein hydrolysates, and 12 peptides (SMP-1 to SMP-12) were prepared from SMPH. Among them, SMP-3, SMP-7, SMP-10, and SMP-11 showed the higher DPPH radical scavenging activities and were identified as Pro-Glu-Leu-Asp-Trp (PELDW), Trp-Pro-Asp-His-Trp (WPDHW), and Phe-Gly-Tyr-Asp-Trp-Trp (FGYDWW), and Tyr-Leu-His-Phe-Trp (YLHFW), respectively. PELDW, WPDHW, FGYDWW, and YLHFW showed high scavenging activities on DPPH radical (EC50 1.53, 0.70, 0.53, and 0.97 mg/mL, respectively), hydroxyl radical (EC50 1.12, 0.38, 0.26, and 0.67 mg/mL, respectively), and superoxide anion radical (EC50 0.85, 0.49, 0.34, and 1.37 mg/mL, respectively). Moreover, PELDW, WPDHW, FGYDWW, and YLHFW could dose-dependently inhibit lipid peroxidation in the linoleic acid model system and protect plasmid DNA (pBR322DNA) against oxidative damage induced by H2O2 in the tested model systems. In addition, PELDW, WPDHW, FGYDWW, and YLHFW could retain their high activities when they were treated under a low temperature (<60 °C) and a moderate pH environment (pH 5-9). These present results indicate that the protein hydrolysate, fractions, and isolated peptides from Spanish mackerel muscle have strong antioxidant activity and might have the potential to be used in health food products.


Asunto(s)
Antioxidantes/farmacología , Productos Pesqueros , Péptidos/farmacología , Perciformes , Hidrolisados de Proteína/química , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Fraccionamiento Químico/métodos , Cromatografía/métodos , Peroxidación de Lípido/efectos de los fármacos , Músculos/química , Estrés Oxidativo/efectos de los fármacos , Péptidos/química , Péptidos/aislamiento & purificación , Estabilidad Proteica , Ultrafiltración/métodos
10.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683554

RESUMEN

In our previous research, ten antioxidant pentapeptides including FYKWP, FTGMD, GFEPY, YLPYA, FPPYERRQ, GFYAA, FSGLR, FPYLRH, VPDDD, and GIEWA were identified from the hydrolysate of miiuy croaker (Miichthys miiuy) swim bladder. In this work, their protective function on H2O2-induced oxidative damage to human umbilical vein endothelial cells (HUVECs) was studied. Results indicated that there was no significant difference in the HUVEC viability between the normal group and the treated groups with the 10 pentapeptides at the concentration of 100 µM for 24 h (p < 0.05). Furthermore, FPYLRH of 100 µg/mL extremely significantly (p < 0.001) increased the viability (80.58% ± 5.01%) of HUVECs with H2O2-induced oxidative damage compared with that of the model group. The protective mechanism indicated that FPYLRH could extremely significantly (p < 0.001) increase the levels of superoxide dismutase (SOD) (211.36 ± 8.29 U/mg prot) and GSH-Px (53.06 ± 2.34 U/mg prot) and decrease the contents of reactive oxygen species (ROS) (139.1 ± 11.8% of control), malondialdehyde (MDA) (13.66 ± 0.71 nM/mg), and nitric oxide (NO) (4.36 ± 0.32 µM/L) at the concentration of 100 µM in HUVECs with H2O2-induced oxidative damage compared with those of the model group. In addition, FPYLRH dose-dependently protected DNA in oxidative damage HUVECs model. These results suggested that FPYLRH could significantly attenuate the H2O2-induced stress injury in HUVECs and might be used as a potential natural antioxidant in the functional food industries.


Asunto(s)
Antioxidantes/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Oligopéptidos/farmacología , Perciformes/metabolismo , Hidrolisados de Proteína/metabolismo , Sacos Aéreos/química , Sacos Aéreos/metabolismo , Secuencia de Aminoácidos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Oxidantes/farmacología , Sustancias Protectoras/farmacología , Hidrolisados de Proteína/química , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
11.
Mar Drugs ; 16(4)2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-29565311

RESUMEN

In the experiment, crude proteins from spotless smoothhound (Mustelus griseus), cartilages were isolated by HCl-Guanidine buffer, and its hydrolysate was prepared using trypsin at pH 8.0, 40 °C with a total enzyme dose of 2.5%. Subsequently, three antioxidant peptides were purified from the hydrolysate using membrane ultrafiltration, anion-exchange chromatography, gel filtration chromatography, and reverse phase high-performance liquid chromatography. The amino acid sequences of isolated peptides were identified as Gly-Ala-Glu-Arg-Pro (MCPE-A); Gly-Glu-Arg-Glu-Ala-Asn-Val-Met (MCPE-B); and Ala-Glu-Val-Gly (MCPE-C) with molecular weights of 528.57, 905.00, and 374.40 Da, respectively, using protein amino acid sequence analyzer and mass spectrum. MCPE-A, MCPE-B and MCPE-C exhibited good scavenging activities on 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH•) (EC50 3.73, 1.87, and 2.30 mg/mL, respectively), hydroxyl radicals (HO•) (EC50 0.25, 0.34, and 0.06 mg/mL, respectively), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radicals (ABTS⁺•) (EC50 0.10, 0.05, and 0.07 mg/mL, respectively) and superoxide anion radicals ( O 2 - •) (EC50 0.09, 0.33, and 0.18 mg/mL, respectively). MCPE-B showed similar inhibiting ability on lipid peroxidation with butylated hydroxytoluene (BHT) in a linoleic acid model system. Furthermore, MCPE-A, MCPE-B, and MCPE-C could protect H2O2-induced HepG2 cells from oxidative stress by decreasing the content of malonaldehyde (MDA) and increasing the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GSH-Rx). Glu, Gly, Met, and Pro in their sequences and low molecular weight could be attributed to the antioxidant activities of three isolated peptides. These results suggested that GAERP (MCPE-A), GEREANVM (MCPE-B), and AEVG (MCPE-C) from cartilage protein hydrolysate of spotless smoothhound might serve as potential antioxidants and be used in the pharmaceutical and health food industries.


Asunto(s)
Antioxidantes/farmacología , Cartílago/química , Elasmobranquios/metabolismo , Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Antioxidantes/química , Cromatografía Liquida/métodos , Peroxidación de Lípido/efectos de los fármacos , Péptidos/química
12.
Mar Drugs ; 16(5)2018 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-29757239

RESUMEN

Collagen is one of the most useful biomaterials and widely applied in functional food and cosmetics. However, some consumers have paid close attention to the safety of mammalian collagens because of the outbreaks of bovine spongiform encephalopathy (BSE), foot-and-mouth disease (FMD), and other prion diseases. Therefore, there is a strong demand for developing alternative sources of collagen, with one promising source being from the process by-products of commercial fisheries. In this report, acid-soluble collagen (ASC-SB) and pepsin-soluble collagen (PSC-SB) from swim bladders of miiuy croaker (Miichthys miiuy) were isolated with yields of 1.33 ± 0.11% and 8.37 ± 0.24% of dry swim bladder weight. Glycine was the major amino acid present, with a content of 320.5 (ASC-SB) and 333.6 residues/1000 residues (PSC-SB). ASC-SB and PSC-SB had much lower denaturation temperatures compared to mammalian collagen, a consequence of low imino acid contents (196.7 and 199.5 residues/1000 residues for ASC-SB and PSC-SB, respectively). The data of amino acid composition, SDS-PAGE pattern, UV and FTIR spectra confirmed that ASC-SB and PSC-SB were mainly composed of type I collagen. FTIR spectra data indicated there were more hydrogen bonding and intermolecular crosslinks in ASC-SB. These collagens showed high solubility in the acidic pH ranges and low NaCl concentrations (less than 2%). The Zeta potential values of ASC-SB and PSC-SB were 6.74 and 6.85, respectively. ASC-SB and PSC-SB presented irregular, dense, sheet-like films linked by random-coiled filaments under scanning electron microscopy. In addition, ASC-SB and PSC-SB could scavenge DPPH radical, hydroxyl radical, superoxide anion radical, and ABTS radical in a dose-dependent manner. Overall, the results indicate that collagens from the swim bladders of miiuy croaker are a viable substitute for mammalian collagen, with potential functional food and cosmeceutical applications.


Asunto(s)
Sacos Aéreos/química , Antioxidantes/farmacología , Organismos Acuáticos , Colágeno Tipo I/farmacología , Perciformes , Ácidos/química , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Colágeno Tipo I/química , Colágeno Tipo I/aislamiento & purificación , Cosméticos/química , Alimentos Funcionales , Concentración de Iones de Hidrógeno , Pepsina A/química , Especies Reactivas de Oxígeno/química
13.
Mar Drugs ; 16(10)2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30347803

RESUMEN

In this report, acid-soluble collagen (ASC-MC) and pepsin-soluble collagen (PSC-MC) were extracted from the scales of miiuy croaker (Miichthys miiuy) with yields of 0.64 ± 0.07% and 3.87 ± 0.15% of dry weight basis, respectively. ASC-MC and PSC-MC had glycine as the major amino acid with the contents of 341.8 ± 4.2 and 344.5 ± 3.2 residues/1000 residues, respectively. ASC-MC and PSC-MC had lower denaturation temperatures (32.2 °C and 29.0 °C for ASC-MC and PSC-MC, respectively) compared to mammalian collagen due to their low imino acid content (197.6 and 195.2 residues/1000 residues for ASC-MC and PSC-MC, respectively). ASC-MC and PSC-MC were mainly composed of type I collagen on the literatures and results of amino acid composition, SDS-PAGE pattern, ultraviolet (UV) and Fourier-transform infrared spectroscopy (FTIR) spectra. The maximum solubility of ASC-MC and PSC-MC was appeared at pH 1⁻3 and a sharp decrease in solubility was observed when the NaCl concentration was above 2%. Zeta potential studies indicated that ASC-MC and PSC-MC exhibited a net zero charge at pH 6.66 and 6.81, respectively. Furthermore, the scavenging capabilities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical, superoxide anion radical and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical of ASC-MC and PSC-MC were positively correlated with their tested concentration ranged from 0 to 5 mg/mL and PSC-MC showed significantly higher activity than that of ASC-MC at most tested concentrations (p < 0.05). In addition, the scavenging capability of PSC-MC on hydroxyl radical and superoxide anion radical was higher than those of DPPH radical and ABTS radical, which suggested that ASC-SC and PSC-SC might be served as hydroxyl radical and superoxide anion radical scavenger in cosmeceutical products for protecting skins from photoaging and ultraviolet damage.


Asunto(s)
Escamas de Animales/química , Antioxidantes/farmacología , Colágeno/farmacología , Proteínas de Peces/farmacología , Perciformes , Ácidos/química , Aminoácidos/química , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Colágeno/química , Colágeno/aislamiento & purificación , Colágeno/ultraestructura , Proteínas de Peces/química , Proteínas de Peces/aislamiento & purificación , Proteínas de Peces/ultraestructura , Depuradores de Radicales Libres , Radicales Libres , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Pepsina A/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
14.
Mar Drugs ; 14(8)2016 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-27537897

RESUMEN

In this study, the hexapeptide Phe-Ile-Met-Gly-Pro-Tyr (FIMGPY), which has a molecular weight of 726.9 Da, was separated from skate (Raja porosa) cartilage protein hydrolysate using ultrafiltration and chromatographic methods, and its anticancer activity was evaluated in HeLa cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay indicated that FIMGPY exhibited high, dose-dependent anti-proliferation activities in HeLa cells with an IC50 of 4.81 mg/mL. Acridine orange/ethidium bromide (AO/EB) fluorescence staining and flow cytometry methods confirmed that FIMGPY could inhibit HeLa cell proliferation by inducing apoptosis. Western blot assay revealed that the Bax/Bcl-2 ratio and relative intensity of caspase-3 in HeLa cells treated with 7-mg/mL FIMGPY were 2.63 and 1.83, respectively, significantly higher than those of the blank control (p < 0.01). Thus, FIMGPY could induce apoptosis by upregulating the Bax/Bcl-2 ratio and caspase-3 activation. Using a DNA ladder method further confirmed that the anti-proliferation activity of FIMGPY was attributable to its role in inducing apoptosis. These results suggest that FIMGPY from skate cartilage protein hydrolysate may have applications as functional foods and nutraceuticals for the treatment and prevention of cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cartílago/química , Oligopéptidos/farmacología , Hidrolisados de Proteína/química , Rajidae , Animales , Antineoplásicos/aislamiento & purificación , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Femenino , Citometría de Flujo , Células HeLa , Humanos , Concentración 50 Inhibidora , Neoplasias/prevención & control , Oligopéptidos/aislamiento & purificación , Hidrolisados de Proteína/aislamiento & purificación , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ultrafiltración , Regulación hacia Arriba , Proteína X Asociada a bcl-2/metabolismo
15.
Mar Drugs ; 14(12)2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27983570

RESUMEN

The swim bladder of the croceine croaker (Pseudosciaena crocea) was believed to have good curative effects in various diseases, including amnesia, insomnia, dizziness, anepithymia, and weakness after giving birth, in traditional Chinese medicine. However, there is no research focusing on the antioxidant and anti-fatigue peptides from croceine croaker swim bladders at present. Therefore, the purpose of this study was to investigate the bioactivities of peptide fractions from the protein hydrolysate of croceine croaker related to antioxidant and anti-fatigue effects. In the study, swim bladder peptide fraction (SBP-III-3) was isolated from the protein hydrolysate of the croceine croaker, and its antioxidant and anti-fatigue activities were measured using in vitro and in vivo methods. The results indicated that SBP-III-3 exhibited good scavenging activities on hydroxyl radicals (HO•) (EC50 (the concentration where a sample caused a 50% decrease of the initial concentration of HO•) = 0.867 mg/mL), 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH•) (EC50 = 0.895 mg/mL), superoxide anion radical ( O 2 - •) (EC50 = 0.871 mg/mL), and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical (ABTS⁺•) (EC50 = 0.346 mg/mL). SBP-III-3 also showed protective effects on DNA damage in a concentration-effect manner and prolonged the swimming time to exhaustion of Institute of Cancer Research (ICR) mice by 57.9%-107.5% greater than that of the control. SBP-III-3 could increase the levels of muscle glucose (9.4%-115.2% increase) and liver glycogen (35.7%-157.3%), and decrease the levels of blood urea nitrogen (BUN), lactic acid (LA), and malondialdehyde (MDA) by 16.4%-22.4%, 13.9%-20.1%, and 28.0%-53.6%, respectively. SBP-III-3 also enhanced the activity of lactic dehydrogenase to scavenge excessive LA for slowing the development of fatigue. In addition, SBP-III-3 increased the activities superoxide dismutase, catalase, and glutathione peroxidase to reduce the reactive oxygen species (ROS) damage in mice. In conclusion, SBP-III-3 possessed good anti-fatigue capacities on mice by inhibiting the oxidative reactions and provided an important basis for developing the swim bladder peptide functional food.


Asunto(s)
Sacos Aéreos/química , Daño del ADN/efectos de los fármacos , Fatiga/tratamiento farmacológico , Péptidos/farmacología , Perciformes/metabolismo , Hidrolisados de Proteína/química , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/metabolismo , Compuestos de Bifenilo/química , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Radical Hidroxilo/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos ICR , Péptidos/química , Picratos/química , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
16.
Am J Otolaryngol ; 35(2): 77-84, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24444776

RESUMEN

PURPOSE: Vocal fold leukoplakia is a premalignant precursor of squamous cell carcinoma. Although many efforts have been contributed to therapy of this disease, none exhibits a satisfactory result. The aims of this study were to investigate the effectiveness and feasibility of andrographolide therapy in vocal fold leukoplakia and to explore the preliminary mechanism underlying. MATERIALS AND METHODS: Forty-one eligible patients were enrolled in the study. The patients were treated for 10-minute exposures of 5 ml (25mg/ml) andrographolide injection aerosols twice a day, and 2 weeks was considered as one treatment course. Electronic laryngoscope was used to observe the condition of vocal fold leukoplakia during the treatment. Every patient received one or two treatment courses, and the follow-up was carried out for 12 months. Toxic reactions of treatments were evaluated on the basis of the standards of the United States MD Anderson Cancer Center. Moreover, laryngeal carcinoma cell line Hep2 was applied to explore the mechanism of effect of andrographolide. Anti-proliferative effect on Hep2, cell nuclear morphology, express of mitogen-activated protein kinases (MAPK) and pro-apoptotic protein were detected after andrographolide treatment. RESULTS: We found that andrographolide exhibited significant curative effects on treatments, which were accompanied by thinning of the lesion of leukoplakia, reduction in the whitish surface area, and return of pink or red epithelium. A complete response up to 85% was observed, and no toxic side effect events occurred during the study. No patient with a complete response had a recurrence in the follow-up. Moreover, cellular experiments in Hep2 indicated that andrographolide activated MAPK pathway and caspase cascade, and finally induced apoptosis in laryngeal carcinoma cell. CONCLUSIONS: The advantages of andrographolide are connected with minimally invasive and localized character of the treatment and no damage of collagenous tissue structures, which are more convenient and less painful for patients. These results suggest that andrographolide treatment is a viable strategy for curing vocal fold leukoplakia.


Asunto(s)
Diterpenos/administración & dosificación , Neoplasias Laríngeas/tratamiento farmacológico , Leucoplasia/tratamiento farmacológico , Pliegues Vocales , Administración por Inhalación , Adulto , Anciano , Antiinflamatorios no Esteroideos/administración & dosificación , Biopsia , Relación Dosis-Respuesta a Droga , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Laríngeas/diagnóstico , Neoplasias Laríngeas/fisiopatología , Laringoscopía , Leucoplasia/diagnóstico , Leucoplasia/fisiopatología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Estereoisomerismo , Factores de Tiempo , Resultado del Tratamiento , Calidad de la Voz
17.
Front Nutr ; 9: 868681, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495901

RESUMEN

To effectively utilize skipjack tuna (Katsuwonus pelamis) processing by-products to prepare peptides with high angiotensin-I-converting enzyme (ACE) inhibitory (ACEi) activity, Neutrase was selected from five kinds of protease for hydrolyzing skipjack tuna dark muscle, and its best hydrolysis conditions were optimized as enzyme dose of 1.6%, pH 6.7, and temperature of 50°C using single factor and response surface experiments. Subsequently, 14 novel ACEi peptides were prepared from the high ACEi protein hydrolysate and identified as TE, AG, MWN, MEKS, VK, MQR, MKKS, VKRT, IPK, YNY, LPRS, FEK, IRR, and WERGE. MWN, MEKS, MKKS, and LPRS displayed significantly ACEi activity with IC50 values of 0.328 ± 0.035, 0.527 ± 0.030, 0.269 ± 0.006, and 0.495 ± 0.024 mg/mL, respectively. Furthermore, LPRS showed the highest increasing ability on nitric oxide (NO) production among four ACEi peptides combining the direct increase and reversing the negative influence of norepinephrine (NE), and MKKS showed the highest ability on directly decreasing and reversing the side effects of NE on the secretion level of endothelin-1 (ET-1) among four ACEi peptides. These findings demonstrate that seafood by-product proteins are potential ACEi peptide sources and prepared ACEi peptides from skipjack tuna dark muscle, which are beneficial components for functional food against hypertension and cardiovascular diseases.

18.
Food Funct ; 13(14): 7831-7846, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35770686

RESUMEN

In the study, seventeen angiotensin converting enzyme (ACE) inhibitory peptides were isolated from the protein hydrolysate of blue mussel (Mytilus edulis) and identified as MFR, MFV, FV, KP, QP, QVK, IK, YKV, IRK, MLKV, NFRPQ, YEGDP, WF, GPE, SWISS, SVEWK, and FKWH, respectively. Among them, IK, YEGDP, WF, and SWISS showed the strongest ACE inhibitory activity with IC50 values of 0.77 ± 0.020, 0.19 ± 0.010, 0.40 ± 0.015, and 0.32 ± 0.017 mg mL-1, respectively. Molecular docking study indicated that IK, YEGDP, WF, and SWISS exhibited better inhibitory activity attributed to its effective interaction with the active site of ACE by hydrogen bonding, electrostatic force and hydrophobic interaction. Furthermore, IK, YEGDP and WF perform an important protective function on human umbilical vein endothelial cells (HUVECs) by increasing nitric oxide (NO) content, decreasing endothelin-1 (ET-1) secretion, and antagonizing the adverse impact of norepinephrine on the secretion of NO and ET-1. In addition, YEGDP and WF could provide protection to HUVECs against H2O2 damage by increasing superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and NO levels to decrease the contents of reactive oxygen species (ROS) and malondialdehyde. Therefore, seventeen ACE inhibitory peptides, especially YEGDP and WF, might be used as natural ingredients for the development of products with antihypertensive functions.


Asunto(s)
Mytilus edulis , Hidrolisados de Proteína , Inhibidores de la Enzima Convertidora de Angiotensina/química , Animales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/farmacología , Simulación del Acoplamiento Molecular , Óxido Nítrico/metabolismo , Péptidos/química , Peptidil-Dipeptidasa A/química , Hidrolisados de Proteína/química
19.
J Food Biochem ; 43(5): e12827, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31353526

RESUMEN

In this work, alcalase and flavorzyme were chosen as the hydrolase for preparing high Fischer ratio oligopeptides from Antarctic krill (Euphausia superba) (HFP) using sequential enzyme hydrolysis process, and their hydrolysis conditions were optimized using single factor experiment. According to the Fischer ratio, granular activated carbon of XHJ-200 (200 mesh) showed the best way to remove aromatic amino acids and its optimal parameters were pH value of 6.0, adsorption time of 2.5 hr, temperature of 25°C, and solid-liquid ratio of 1:20. The Fischer ratio and average molecular weight of HFP were 21.12 (>20) and 779.9 Da, respectively. In addition, the peptide profile of HFP was established using RP-HPLC and 23 oligopeptides isolated from HFP including 6 dipeptides, 9 tripeptides, 3 tetrapeptides, and 5 pentapeptides were identified using protein amino acid sequence analyzer and mass spectrum. Furthermore, HFP exhibited high radical scavenging activity, reducing power, and lipid peroxidation inhibition capability. PRACTICAL APPLICATIONS: High Fischer ratio oligopeptides (HFO) is a kind of small peptide mixture with the mole ratio of branched-chain amino acids (BCAA) to aromatic amino acids (AAA) higher than 20, which has drawn a great attention due to its great potential in clinical nutrition approaches for the treatment of liver disease when amino acid composition is out of proportion characterized by low levels of BCAA and high levels of AAA in the systemic blood. Antarctic krill is regarded as the largest animal protein resource for various food and pharmaceutical products. However, there is no report on the preparation of HFO of Antarctic krill (HFP). Therefore, the aim of the present study was to investigate the preparation process, peptide profiles and in vitro antioxidant activity of HFP. This study will potentially enhance the value-added utilization of Antarctic krill by making it an important raw material in the health-promoting functional products.


Asunto(s)
Antioxidantes/farmacología , Euphausiacea/química , Ácidos Grasos/farmacología , Depuradores de Radicales Libres/farmacología , Oligopéptidos/farmacología , Adsorción , Aminoácidos Aromáticos/metabolismo , Animales , Regiones Antárticas , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Ácidos Grasos/química , Ácidos Grasos/aislamiento & purificación , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Hidrólisis , Espectrometría de Masas , Peso Molecular , Oligopéptidos/química , Oligopéptidos/aislamiento & purificación , Proteínas/metabolismo , Temperatura
20.
Food Res Int ; 121: 197-204, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31108740

RESUMEN

In this report, eight antihypertensive peptides were isolated from protein hydrolysate of Antarctic krill (Euphausia superba) using ultrafiltration and chromatography consecutively, and their sequences were identified as Trp-Phe, Tyr-Arg-Lys-Glu-Arg, Tyr-Arg-Lys, Val-Asp, Tyr-Lys-Asp, Phe-Gln-Lys, Phe-Ala-Ser, and Phe-Arg-Lys-Glu. The IC50 values of Trp-Phe (0.32 ±â€¯0.05 mg/mL) and Phe-Ala-Ser (0.15 ±â€¯0.02 mg/mL) on ACE inhibitory activity were significantly (p ≤ .05) lower than those of the other six peptides. Furthermore, Trp-Phe, Tyr-Arg-Lys, Phe-Gln-Lys, and Phe-Ala-Ser did not only increase the nitric oxide (NO) concentration and decreased the content of endothelin-1 (ET-1) in the medium of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner after 24 h, but also significantly reversed the decreased production of NO in the presence of 0.5 µM norepinephrine and the effect of NE on ET-1 production. These results indicate that the isolated antihypertensive peptides can correct the endothelial cell dysfunction induced by norepinephrine.


Asunto(s)
Antihipertensivos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Péptidos , Hidrolisados de Proteína , Secuencia de Aminoácidos , Animales , Antihipertensivos/análisis , Antihipertensivos/química , Antihipertensivos/farmacología , Supervivencia Celular/efectos de los fármacos , Endotelina-1/análisis , Endotelina-1/metabolismo , Euphausiacea , Humanos , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Péptidos/análisis , Péptidos/química , Péptidos/farmacología , Hidrolisados de Proteína/análisis , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA