Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Angew Chem Int Ed Engl ; 61(28): e202202336, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35506192

RESUMEN

Rare studies of cocrystal engineering have focused on improving carrier mobility of organic semiconductors mainly because of the generation of ambipolarity, the alteration of the charge carrier polarity or the reduction of electronic couplings. Herein, we utilize indolo[2,3-a]carbazole (IC) as the model compound and 2,6-diphenylanthraquinone (DPAO) and 9-fluorenone (FO) as the coformers to construct IC2-DPAO and IC-FO cocrystals with 2 : 1 or 1 : 1 ratios, respectively, through hydrogen bonds and donor-acceptor interactions. Interestingly, the more appropriate packing structure, possessing not only enhanced electronic couplings but also increased intermolecular distances, is achieved in IC2-DPAO, which shows an improved carrier mobility of 0.11 cm2  V-1 s-1 by four orders of magnitude relative to the IC crystal. These results suggest that non-equal ratio cocrystal engineering opens up the possibility to develop organic semiconductors with enhanced charge transport behaviors.

2.
Angew Chem Int Ed Engl ; 61(45): e202206825, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-35989244

RESUMEN

Organic semiconductors with combinative high carrier mobility and efficient solid-state emission are full of challenges but urgently pursued for developing new emerging optoelectronics. Herein, by delicately regulating the crystal packing of an anthracene-based molecular crystal via terminal tert-butylation, we developed a superior high mobility emissive molecule, 2,6-di(6-tert-butylnaphthyl)anthracene (TBU-DNA). The unique "slipped herringbone" packing motif of TBU-DNA enables its appropriate exciton-exciton coupling and electron-phonon coupling, thus resulting in remarkably high solid-state emission (photoluminescence quantum yield, ΦF ≈74.9 %) and efficacious charge transport (carrier mobility, µ=5.0 cm2 V-1 s-1 ). Furthermore, OLETs based on TBU-DNA show an external quantum efficiency (EQE) of 1.8 %, which is among the highest EQE values for single component OLETs reported till now. This work presents a crystal engineering strategy via exquisite molecular design to realize high mobility emissive organic semiconductors.

3.
Small ; 17(20): e2006574, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33825322

RESUMEN

There is very limited repertoire of organic ambipolar semiconductors to date. Electron donor-acceptor alternative stacking is a unique and important binary motif for 1D mixed-stack cocrystals, opening up possibilities for the development of organic ambipolar semiconductors. Herein, four 1D mixed-stack cocrystals using N,N'-bis(perfluorobutyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDICNF) as the acceptor and anthracene, pyrene, perylene, and meso-diphenyl tetrathia[22]annulene[2,1,2,1] (DPTTA) as the donors are achieved in a stoichiometric ratio (D:A = 1:1) through solution or vapor processed methods. Their packing structures, energy levels, charge transfer interactions, coassembling behaviors, and molecular orientations are systematically investigated by single-crystal X-ray analysis, absorption spectra, fluorescence quenching, Job's curve plot, and polarized photoluminescence measurements with the help of theoretical calculations. The donor-acceptor alternative stacking direction coincides with the long axis for all the four cocrystals. The field-effect transistors based on Pyrene-PDICNF show the electron mobility up to 0.19 cm2 V-1 s-1 , which is the highest value among perylene diimide-based cocrystals. Moreover, DPTTA-PDICNF cocrystals possess well-balanced electron and hole mobility with 1.7 × 10-2 and 2.0 × 10-2  cm2 V-1 s-1 respectively due to both hole and electron strong superexchange interactions, shedding light on the design of 1D mixed-stack cocrystals with excellent ambipolar transport behaviors.

4.
Angew Chem Int Ed Engl ; 60(1): 281-289, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32697379

RESUMEN

Amplified spontaneous emission (ASE) is intrinsically associated with lasing applications. Inefficient photon energy transfer to ASE is a long-standing issue for organic semiconductors that consist of multiple competing radiative decay pathways, far from being rationally regulated from the perspective of molecular arrangements. Herein, we achieve controllable molecular packing motifs by halogen-bonded cocrystallization, leading to ten times increased radiative decay rate, four times larger ASE radiative decay selectivity and thus remarkable ASE threshold decrease from 223 to 22 µJ cm-2 , albeit with a low photoluminescence quantum yield. We have made an in-depth investigation on the relationship among molecular arrangements, vibration modes, radiative decay profiles and ASE properties. The results suggest that cocrystallization presents a powerful approach to tailor the radiative decay pathways, which is fundamentally important to the development of organic ASE and lasing materials.

5.
J Am Chem Soc ; 142(13): 6332-6339, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32186872

RESUMEN

Here, we design and synthesize an organic laser molecule, 2,7-diphenyl-9H-fluorene (LD-1), which has state-of-the-art integrated optoelectronic properties with a high mobility of 0.25 cm2 V-1 s-1, a high photoluminescence quantum yield of 60.3%, and superior deep-blue laser characteristics (low threshold of Pth = 71 µJ cm-2 and Pth = 53 µJ cm-2 and high quality factor (Q) of ∼3100 and ∼2700 at emission peaks of 390 and 410 nm, respectively). Organic light-emitting transistors based on LD-1 are for the first time demonstrated with obvious electroluminescent emission and gate tunable features. This work opens the door for a new class of organic semiconductor laser molecules and is critical for deep-blue optical and laser applications.

6.
Angew Chem Int Ed Engl ; 59(33): 14024-14028, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32396268

RESUMEN

Aromatic diimides are one of the most important chromophores in the construction of n-type organic semiconductors, which lag far behind their p-type counterpart but are necessary for ambipolar transistors, p-n junctions and organic complementary circuits. Herein, we establish a facile one-pot domino synthetic protocol for aromatic diimides via palladium-catalyzed carbonylation of tetrabromo aromatic precursors. Taking tetrabromocorannulene (TBrCor) and tetrabromo-2,7-di-tert-butylpyrene (TBrPy) as the typical examples, we obtained diimide derivatives in yields of about 50 %, one order of magnitude higher than that of the traditional multi-step diimidization. As demonstrated in the case of corannulene diimide, the efficient diimidization not only allows the LUMO levels to be lowered significantly but also provides an ordered and closer packing structures, opening up possibilities to the development of n-type semiconducting materials based on a variety of aromatic systems.

7.
J Am Chem Soc ; 141(24): 9490-9494, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31184485

RESUMEN

The exploration of biocompatible materials with circularly polarized luminescence (CPL) activity is becoming an attractive topic due to the great potential application in biosensing and bioimaging. Here, we describe a strategy to fabricate new CPL-active biomaterials using achiral carbazole-based biscyanine fluorophores coassembled with chiral deoxyribonucleic acid (DNA) molecules. This cyanine molecule has been shown to behave as a DNA detecting probe, featuring strong fluorescent emission induced by restriction of intramolecular rotation (RIR). When the achiral cyanine molecules are bound to the minor groove of DNA via electrostatic attraction in aqueous solution, the chirality of the DNA molecules can be transferred to the confined RIR cyanine dyes, triggering a remarkable circularly polarized luminescent emission. The chirality of the CPL signal can be regulated by the structures of the DNA templates. Stimuli-responsive CPL activates were observed from DNA-cyanine complexes. We further verified this strategy on different DNA-based nanomaterials, including DNA origami nanostructure. Our design presents a new avenue to fabricate compatible CPL materials.


Asunto(s)
Carbazoles/química , ADN/química , Colorantes Fluorescentes/química , Compuestos de Piridinio/química , Fluorescencia , Nanocompuestos/química , Espectrometría de Fluorescencia
8.
Phys Chem Chem Phys ; 21(29): 16293-16301, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31304481

RESUMEN

So far, quantum interference in molecular devices where the anchors are inseparable parts of the whole molecule has been seldom discussed. In this article, we perform first-principles calculations on the electronic transmission properties of a series of Au-thienoacene-Au junctions where the molecule interacts with electrodes through the S atoms in thiophene rings in a fused-ring system. The calculated binding energy of the Au-S interaction is highly dependent on the substitution sites of the thiophene rings, which agrees with the experimental report that the Au-S interaction is too weak to form a junction for some molecules. The electronic coupling at the molecule-electrode contact is also affected by the molecular structure. To distinguish the coupling mechanism, we show the importance of investigating the electron distribution of frontier molecular orbitals in combination with the percentage of the π system in the partial density of states on the S atoms. Because of the difference in electronic coupling, comparison between molecules should be done with care. On the other hand, conductance suppression due to the destructive quantum interference originating from the molecular topology is demonstrated by comparing the properties of isomers with similar molecule-electrode coupling.

9.
J Am Chem Soc ; 140(20): 6186-6189, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29595961

RESUMEN

We report here a new ternary solvated (perylene-TCNB)·2THF cocrystal, which can transform into binary perylene-TCNB cocrystal reversibly by successive desorption or absorption of THF solvent. As a consequence, macroscopic mechanical bending would be realized when repeated stimulation with THF solvent. The present results clearly demonstrated that solvent induced mechanical bending is driven by structural change at the molecular scale. Such solvatomechanical bending behavior is clearly revealed for the first time.

10.
J Am Chem Soc ; 140(1): 62-65, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29205033

RESUMEN

While cofacial one-dimensional (1-D) π stacking of a planar aromatic molecule is ideal for the construction of conduction systems, such molecules, including tetrabenzoporphyrin (BP), prefer to form edge-to-face stacking through CH-π interactions. We report here that the BP molecules spontaneously form a 1-D cofacial stack in chloroform containing 1% trifluoroacetic acid (TFA) and that a bundle of the formed nanofiber shows acid-responsive 1-D conductivity as high as 1904 S m-1. A small fraction (2.7%) of BP in the fiber exists in a cation radical state, and 1.5 equiv of TFA is located in an intercolumnar void. Dedoping and redoping of TFA with trimethylamine vapor results in 1300-2700-fold decreases and increases, respectively, in the conductivity and also the amount of the radical cation. The conductivity of the fiber also shows a correlation with the pKa of acid dopants.

11.
J Am Chem Soc ; 140(24): 7519-7525, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29793338

RESUMEN

Polymorphism is pervasive in molecular solids. While computational predictions of the molecular polymorphic landscape have improved significantly, identifying which polymorphs are preferentially accessed and experimentally stable remains a challenge. We report a framework that correlates short intermolecular contacts with polymorphic stability. The presence of short contacts between neighboring molecules prevents structural rearrangement and stabilizes the packing arrangement, even when the stabilized polymorph is not enthalpically favored. In the absence of such intermolecular short contacts, the molecules have added degrees of freedom for structural rearrangement, and solid-solid polymorphic transformations occur readily. Starting with a series of core-halogenated naphthalene tetracarboxylic diimides, we establish this framework with the packing polymorphs of more than 20 compounds, ranging from molecular semiconductors to pharmaceutics and biological building blocks. This framework, widely applicable across molecular solids, can help refine computational predictions by identifying the polymorphs that are kinetically stable.

12.
J Am Chem Soc ; 139(48): 17261-17264, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29111716

RESUMEN

Organic semiconductors integrating excellent charge transport with efficient solid emission are very challenging to be attained in the construction of light-emitting transistors and even for realization of electrically pumped organic lasers. Herein, we introduce naphthyl units at 2,6-positions of anthracene to achieve 2,6-di(2-naphthyl)anthracene (dNaAnt), which adopts J-aggregated mode in the solid state as a balanced strategy for excellent charge transporting and efficient solid state emission. Single crystal field-effect transistors show mobility up to 12.3 cm2·V-1·s-1 and a photoluminescence quantum yield of 29.2% was obtained for dNaAnt crystals. Furthermore, organic light-emitting transistors (OLETs) based on dNaAnt single crystals distribute outstanding balanced ambipolar charge transporting property (µh = 1.10 cm2·V-1·s-1, µe = 0.87 cm2·V-1·s-1) and spatially controllable emission, which is one of the best performances for OLETs.

13.
J Am Chem Soc ; 139(7): 2734-2740, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28127956

RESUMEN

Efficient charge transport in organic semiconductors is essential for construction of high performance optoelectronic devices. Herein, for the first time, we demonstrate that poly(amic acid) (PAA), a facilely deposited and annealing-free dielectric layer, can tailor the growth of organic semiconductor films with large area and high crystallinity toward efficient charge transport and high mobility in their thin film transistors. Pentacene is used as a model system to demonstrate the concept with mobility up to 30.6 cm2 V-1 s-1, comparable to its high quality single crystal devices. The structure of PAA has corrugations with OH groups pointing out of the surface, and the presence of an amide bond further allows adjacent polymer strands to interact via hydrogen bonding, leading to a self-rippled surface perpendicular to the corrugation. On the other hand, the strong polar groups (-COOH/-CONH) of PAA could provide repulsive forces between PAA and pentacene, which results in the vertical orientation of pentacene on the dielectric surface. Indeed, in comparison with its imidized counterpart polyimide (PI), PAA dielectric significantly enhances the film crystallinity, drastically increases the domain size, and decreases the interface trap density, giving rise to superior device performance with high mobility. This concept can be extended to more organic semiconducting systems, e.g., 2,6-diphenylanthracene (DPA), tetracene, copper phthalocyanine (CuPc), and copper hexadecafluorophthalocyanine (F16CuPc), demonstrating the general applicability. The results show the importance of combining surface nanogrooves with the strong polarity in orienting the molecular arrangement for high crystallinity toward efficient charge transport in organic semiconductors.

14.
Angew Chem Int Ed Engl ; 55(33): 9519-23, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27237452

RESUMEN

Two-dimensional (2D) crystals of organic semiconductors (2DCOS) have attracted attention for large-area and low-cost flexible optoelectronics. However, growing large 2DCOS in controllable ways and transferring them onto technologically important substrates, remain key challenges. Herein we report a facile, general, and effective method to grow 2DCOS up to centimeter size which can be transferred to any substrate efficiently. The method named "solution epitaxy" involves two steps. The first is to self-assemble micrometer-sized 2DCOS on water surface. The second is epitaxial growth of them into millimeter or centimeter sized 2DCOS with thickness of several molecular layers. The general applicability of this method for the growth of 2DCOS is demonstrated by nine organic semiconductors with different molecular structures. Organic field-effect transistors (OFETs) based on the 2DCOS demonstrated high performance, confirming the high quality of the 2DCOS.

15.
Angew Chem Int Ed Engl ; 55(45): 14023-14027, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27723219

RESUMEN

The spectroscopic and photophysical properties of organic materials in the solid-state are widely accepted as a result of their molecular packing structure and intermolecular interactions, such as J- and H-aggregation, charge-transfer (CT), excimer and exciplex. However, in this work, we show that Spe-F4 DIB cocrystals (SFCs) surprisingly retain the energy levels of photoluminescence (PL) states of Spe crystals, despite a significantly altered molecular packing structure after cocrystallization. In comparison, Npe-F4 DIB cocrystals (NFCs) with new spectroscopic states display different spectra and photophysical behaviors as compared with those of individual component crystals. These may be related to the molecular configuration in crystals, and we propose Spe as an "intramolecular emissive" material, thus providing a new viewpoint on light-emitting species of organic chromophores. Moreover, the nonlinear optical (NLO) properties of Npe and Spe are firstly demonstrated and modulated by cocrystallization. The established "molecule-packing-property" relationship helps to rationally control the optical properties of organic materials through cocrystallization.

16.
Angew Chem Int Ed Engl ; 55(17): 5206-9, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-26990048

RESUMEN

Traditionally, it is believed that three-dimensional transport networks are preferable to those of lower dimensions. We demonstrate that inter-layer electronic couplings may result in a drastic decrease of charge mobilities by utilizing field-effect transistors (FET) based on two phases of titanyl phthalocyanine (TiOPc) crystals. The α-phase crystals with electronic couplings along two dimensions show a maximum mobility up to 26.8 cm(2) V(-1) s(-1) . In sharp contrast, the ß-phase crystals with extra significant inter-layer electronic couplings show a maximum mobility of only 0.1 cm(2) V(-1) s(-1) . Theoretical calculations on the bulk crystals and model slabs reveal that the inter-layer electronic couplings for the ß-phase devices will diminish remarkably the device charge transport abilities owing to the coupling direction perpendicular to the current direction. This work provides new insights into the impact of the dimensionality and directionality of the packing arrangements on charge transport in organic semiconductors.

17.
J Am Chem Soc ; 137(6): 2247-52, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25626088

RESUMEN

A solid solution of a 75:25 mixture of tetrabenzoporphyrin (BP) and dichloroacenaphtho[q]tribenzo[b,g,l]porphyrin (CABP) forms when they are generated in a matrix of (dimethyl(o-anisyl)silylmethyl)(dimethylphenylsilylmethyl)[60]fullerene. This solid solution provides structural and optoelectronic properties entirely different from those of either pristine compounds or a mixture at other blending ratios. The use of this BP:CABP solid solution for organic solar cell (OSC) devices resulted in a power conversion efficiency (PCE) value higher by 16 and 300% than the PCE values obtained for the devices using the single donor BP and CABP, respectively, in a planar heterojunction architecture. This increase originates largely from the increase in short circuit current density, and hence by enhanced charge carrier separation at the donor/acceptor interface, which was probably caused by suitable energy level for the solid solution state, where electronic coupling between the two porphyrins occurred. The results suggest that physical and chemical modulation in solid solution is beneficial as an operationally simple method to enhance OSC performance.

18.
J Am Chem Soc ; 137(34): 11038-46, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26226301

RESUMEN

Charge-transfer (CT) interactions between donor (D) and acceptor (A) groups, as well as CT exciton dynamics, play important roles in optoelectronic devices, such as organic solar cells, photodetectors, and light-emitting sources, which are not yet well understood. In this contribution, the self-assembly behavior, molecular stacking structure, CT interactions, density functional theory (DFT) calculations, and corresponding physicochemical properties of two similar halogen-bonded co-crystals are comprehensively investigated and compared, to construct an "assembly-structure-CT-property" relationship. Bpe-IFB wire-like crystals (where Bpe = 1,2-bis(4-pyridyl)ethylene and IFB = 1,3,5-trifluoro-2,4,6-triiodobenzene), packed in a segregated stacking form with CT ground and excited states, are measured to be quasi-one-dimensional (1D) semiconductors and show strong violet-blue photoluminescence (PL) from the lowest CT1 excitons (ΦPL = 26.1%), which can be confined and propagate oppositely along the 1D axial direction. In comparison, Bpe-F4DIB block-like crystals (F4DIB = 1,4-diiodotetrafluorobenzene), packed in a mixed stacking form without CT interactions, are determined to be insulators and exhibit unique white light emission and two-dimensional optical waveguide property. Surprisingly, it seems that the intrinsic spectroscopic states of Bpe and F4DIB do not change after co-crystallization, which is also confirmed by theoretical calculations, thus offering a new design principle for white light emitting materials. More importantly, we show that the CT interactions in co-crystals are related to their molecular packing and can be triggered or suppressed by crystal engineering, which eventually leads to distinct optoelectronic properties. These results help us to rationally control the CT interactions in organic D-A systems by tuning the molecular stacking, toward the development of a fantastic "optoelectronic world".


Asunto(s)
Electrónica , Halógenos/química , Cristalización , Etano/análogos & derivados , Etano/química , Fluorobencenos/química , Yodobencenos/química , Luminiscencia , Tamaño de la Partícula , Piridinas/química , Teoría Cuántica , Semiconductores
19.
Small ; 11(18): 2150-6, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25522331

RESUMEN

Organic charge-transfer co-crystals with varied donor-acceptor stoichiometric ratios and molecular packing structures are controllably prepared with the morphology of nanowires or microblocks. They have distinct charge transport behavior and photoresponsivity. These interesting results pave the way for rational design and preparation of co-crystals with desired functions.

20.
Small ; 11(27): 3351-6, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25760306

RESUMEN

Pressure sensors based on solution-processed metal-organic frameworks nanowire arrays are fabricated with very low cost, flexibility, high sensitivity, and ease of integration into sensor arrays. Furthermore, the pressure sensors are suitable for monitoring and diagnosing biomedical signals such as radial artery pressure waveforms in real time.


Asunto(s)
Vestuario , Conductometría/instrumentación , Nanopartículas del Metal/química , Monitoreo Ambulatorio/instrumentación , Nanocompuestos/química , Transductores de Presión , Materiales Biomiméticos , Cristalización/métodos , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Ensayo de Materiales , Nanopartículas del Metal/ultraestructura , Nanocompuestos/ultraestructura , Nanotecnología/instrumentación , Sensibilidad y Especificidad , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA