RESUMEN
Hepatitis B virus (HBV) can be completely suppressed after antiviral treatment; however, some patients with chronic hepatitis B (CHB) exhibit elevated alanine aminotransferase (ALT) levels and sustained disease progression. This study provides novel insights into the mechanism and potential predictive biomarkers of persistently elevated ALT (PeALT) in patients with CHB after complete viral inhibition. Patients having CHB with undetectable HBV DNA at least 12 months after antiviral treatment were enrolled from a prospective, observational cohort. Patients with PeALT and persistently normal ALT (PnALT) were matched 1:1 using propensity score matching. Correlations between plasma metabolites and the risk of elevated ALT were examined using multivariate logistic regression. A mouse model of carbon tetrachloride-induced liver injury was established to validate the effect of key differential metabolites on liver injury. Of the 1238 patients with CHB who achieved complete viral suppression, 40 (3.23%) had PeALT levels during follow-up (median follow-up: 2.42 years). Additionally, 40 patients with PnALT levels were matched as controls. Ser-Phe-Ala, Lys-Ala-Leu-Glu, 3-methylhippuric acid, 3-methylxanthine, and 7-methylxanthine were identified as critical differential metabolites between the two groups and independently associated with PeALT risk. Ser-Phe-Ala and Lys-Ala-Leu-Glu levels could be used to discriminate patients with PeALT from those with PnALT. Furthermore, N-acetyl- l-methionine (NALM) demonstrated the strongest negative correlation with ALT levels. NALM supplementation alleviated liver injury and hepatic necrosis induced by carbon tetrachloride in mice. Changes in circulating metabolites may contribute to PeALT levels in patients with CHB who have achieved complete viral suppression after antiviral treatment.
Asunto(s)
Alanina Transaminasa , Antivirales , Biomarcadores , Hepatitis B Crónica , Humanos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/sangre , Hepatitis B Crónica/virología , Masculino , Femenino , Alanina Transaminasa/sangre , Antivirales/uso terapéutico , Adulto , Estudios Prospectivos , Persona de Mediana Edad , Biomarcadores/sangre , Animales , Ratones , Virus de la Hepatitis B , Respuesta Virológica Sostenida , ADN Viral/sangre , Modelos Animales de Enfermedad , Hígado/patología , Hígado/virología , Carga ViralRESUMEN
Methamphetamine (Meth) is a potent psychostimulant with well-established hepatotoxicity. Gut microbiota-derived short-chain fatty acids (SCFAs) have been reported to yield beneficial effects on the liver. In this study, we aim to further reveal the mechanisms of Meth-induced hepatic injuries and investigate the potential protective effects of SCFAs. Herein, mice were intraperitoneally injected with 15â¯mg/kg Meth to induce hepatic injuries. The composition of fecal microbiota and SCFAs was profiled using 16â¯S rRNA sequencing and Gas Chromatography/Mass Spectrometry (GC/MS) analysis, respectively. Subsequently, SCFAs supplementation was performed to evaluate the protective effects against hepatic injuries. Additionally, Sigma-1 receptor knockout (S1R-/-) mice and fluvoxamine (Flu), an agonist of S1R, were introduced to investigate the mechanisms underlying the protective effects of SCFAs. Our results showed that Meth activated S1R and induced hepatic autophagy, inflammation, and oxidative stress by stimulating the MAPK/ERK pathway. Meanwhile, Meth disrupted SCFAs product-related microbiota, leading to a reduction in fecal SCFAs (especially Acetic acid and Propanoic acid). Accompanied by the optimization of gut microbiota, SCFAs supplementation normalized S1R expression and ameliorated Meth-induced hepatic injuries by repressing the MAPK/ERK pathway. Effectively, S1R knockout repressed Meth-induced activation of the MAPK/ERK pathway and further ameliorated hepatic injuries. Finally, the overexpression of S1R stimulated the MAPK/ERK pathway and yielded comparable adverse phenotypes to Meth administration. These findings suggest that Meth-induced hepatic injuries relied on the activation of S1R, which could be alleviated by SCFAs supplementation. Our study confirms the crucial role of S1R in Meth-induced hepatic injuries for the first time and provides a potential preemptive therapy.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Metanfetamina , Receptores sigma , Receptor Sigma-1 , Animales , Masculino , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Ácidos Grasos Volátiles/metabolismo , Heces/química , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Metanfetamina/toxicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/efectos de los fármacos , Receptores sigma/metabolismoRESUMEN
BACKGROUND: Celiac disease (CeD) is a primary malabsorption syndrome with no specific therapy, which greatly affects the quality of life. Since the pathogenesis of CeD remains riddled, based on multiple transcriptome profiles, this study aimed to establish an immune interaction network and elucidated new mechanisms involved in the pathogenesis of CeD, providing potentially new evidence for the diagnosis and treatment of CeD. METHODS: Three microarray and three RNA sequencing datasets of human duodenal tissue with or without CeD were included in Gene Expression Omnibus and respectively merged into derivation and validation cohorts. Differential expression gene and functional enrichment analysis were developed, then pyroptosis enrichment score (PES) model was established to quantify pyroptosis levels. Immune infiltration and co-expression network were constructed based on Xcell database. Protein-protein interaction and weighted gene co-expression network analysis were determined to identify pyroptosis relative hub genes, whose predictive efficiency were tested using a least absolute shrinkage and selection operator (LASSO) regression model. CeD animal and in vitro cell line models were established to verify the occurrence of pyroptosis and molecules expression employing immunofluorescence, western blotting, cell counting kit-8 assay and enzyme-linked immunosorbent assay. Analysis of single-cell RNAseq (scRNAseq) was performed using "Seurat" R package. RESULTS: Differentially expressed genes (DEGs) (137) were identified in derivation cohort whose function was mainly enriched in interferon response and suppression of metabolism. Since an enrichment of pyroptosis pathway in CeD was unexpectedly discovered, a PES model with high efficiency was constructed and verified with two external databases, which confirmed that pyroptosis was significantly upregulated in CeD epithelia. γδT cells exhibited high expression of IFN-γ were the most relevant cells associated with pyroptosis and occupied a greater weight in the LASSO predictive model of CeD. An accumulation of GSDMD expressed in epithelia was identified using scRNAseq, while animal model and in vitro experiments confirmed that epithelium cells were induced to become "pre-pyroptotic" status via IFN-γ/IRF1/GSDMD axis. Furthermore, gluten intake triggered pyroptosis via caspase-1/GSDMD/IL-1ß pathway. CONCLUSION: Our study demonstrated that pyroptosis was involved in the pathogenesis of CeD, and elucidated the novel role of γδT cells in mediating epithelial cell pyroptosis.
Asunto(s)
Enfermedad Celíaca , Piroptosis , Animales , Humanos , Transcriptoma , Calidad de Vida , Células EpitelialesRESUMEN
Polyethylene terephthalate (PET), primarily utilized for food and beverage packaging, consistently finds its way into the human gut, thereby exerting adverse effects on human health. PET hydrolases, critical for the degradation of PET, have been predominantly sourced from environmental microbial communities. Given the fact that the human gut harbors a vast and intricate consortium of microorganisms, inquiry into the presence of potential PET hydrolases within the human gut microbiota becomes imperative. In this investigation, we meticulously screened 22,156 homologous sequences that could potentially encode PET hydrolases using the hidden Markov model (HMM) paradigm, drawing from 4984 cultivated genomes of healthy human gut bacteria. Subsequently, we methodically validated the hydrolytic efficacy of five selected candidate PET hydrolases on both PET films and powders composed of micro-plastics (MPs). Notably, our study also unveiled the influence of both diverse PET MP powders and their resultant hydrolysates on the modulation of cytokine expression in macrophages. In summary, our research underscores the ubiquitous prevalence and considerable potential of the human gut microbiota in PET hydrolysis. Furthermore, our study significantly contributes to the holistic evaluation of the potential health hazards posed by PET MPs to human well-being.
RESUMEN
Dietary pollution of Aflatoxin B1 (AFB1) poses a great threat to global food safety, which can result in serious hepatic injuries. Following the widespread use of plastic tableware, co-exposure to microplastics and AFB1 has dramatically increased. However, whether microplastics could exert synergistic effects with AFB1 and amplify its hepatotoxicity, and the underlying mechanisms are still unelucidated. Here, mice were orally exposed to 100 nm polystyrene nanoplastics (NPs) and AFB1 to investigate the influences of NPs on AFB1-induced hepatic injuries. We found that exposure to only NPs or AFB1 resulted in colonic inflammation and the impairment of the intestinal barrier, which was exacerbated by combined exposure to NPs and AFB1. Meanwhile, co-exposure to NPs exacerbated AFB1-induced dysbiosis of gut microbiota and remodeling of the fecal metabolome. Moreover, NPs and AFB1 co-exposure exhibited higher levels of systemic inflammatory factors compared to AFB1 exposure. Additionally, NPs co-exposure further exacerbated AFB1-induced hepatic fibrosis and inflammation, which could be associated with the overactivation of the TLR4/MyD88/NF-κB pathway. Notably, Spearman's correlation analysis revealed that the exacerbation of NPs co-exposure was closely associated with microbial dysbiosis. Furthermore, microbiota from NPs-exposed mice (NPsFMT) partly reproduced the exacerbation of NPs on AFB1-induced systemic and hepatic inflammation, but not fibrosis. In summary, our findings indicate that gut microbiota could be involved in the exacerbation of NPs on AFB1-induced hepatic injuries, highlighting the health risks of NPs.
Asunto(s)
Aflatoxina B1 , Microbioma Gastrointestinal , Hígado , Microplásticos , Poliestirenos , Aflatoxina B1/toxicidad , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Poliestirenos/toxicidad , Microplásticos/toxicidad , Hígado/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas , Disbiosis/inducido químicamente , Nanopartículas/toxicidadRESUMEN
Intestinal fibrosis is considered to be a chronic complication of inflammatory bowel disease (IBD) and seriously threatening human health. Effective medical therapies or preventive measures are desirable but currently unavailable. Metformin has been proved to have a satisfactory anti-inflammatory effects in ulcerative colitis (UC) patients. Whether metformin can ameliorate chronic colitis-related intestinal fibrosis and the possible mechanisms remain unclear. Here, we established colitis-related intestinal fibrosis in mice by repetitive administration of TNBS or DSS. Preventive and therapeutic administration of metformin to chronic TNBS or DSS colitis mice indicated that metformin significantly attenuated intestinal fibrosis by suppressing Smad3 phosphorylation. In vitro studies with human colon fibroblast cell line (CCD-18Co) and primary human intestinal fibroblast treated with TGF-ß1 confirmed the anti-fibrotic function of metformin for fibroblast activation, proliferation and collagen production. Mechanistically, metformin particularly inhibited phosphorylation and nuclear translocation of Smad3 by blocking the interaction of Smad3 with TßRI. These findings suggest that metformin will be an attractive anti-fibrotic drug for intestinal fibrosis in future therapies.
RESUMEN
Background: A growing number of studies have found dysbiosis of the intestinal microbiota in patients with Graves' disease (GD). The intestinal epithelial barrier serves as the first line of defense, protecting the immune system from excessive stimulation of microbiota and toxins. Most autoimmune diseases are associated with a gut barrier dysfunction (leaky gut) which allows bacterial translocation. However, to date, potential correlations between intestinal barrier dysfunction and GD have not been explored. Methods: Serum lipopolysaccharide (LPS), intestinal fatty acid-binding protein (I-FABP), zonulin, D-lactate, and diamine oxidase (DAO) were measured to assess barrier integrity in 91 patients with GD (61 initial GD and 30 euthyroid GD) and 44 healthy controls. The quality of life (QOL) of patients with GD was assessed using the thyroid-specific patient-reported outcome (ThyPRO-39) questionnaire. Results: The serum levels of LPS, I-FABP, zonulin, and D-lactate were significantly higher in patients with initial GD than in healthy controls. Logistic regression analysis revealed that zonulin and D-lactate were independently associated with risk for GD and circulating zonulin could effectively distinguish patients with initial GD from healthy controls. Correlation analyses showed that I-FABP, LPS, and D-lactate were positively associated with FT4 and negatively associated with TSH. In addition, circulating LPS, zonulin, and D-lactate levels were all independent predictors of TRAb levels. Moreover, higher circulating LPS levels in patients with GD were associated with more severe hyperthyroidism (higher concentrations of FT3, FT4, and TRAb and lower TSH concentrations) and worse scores of hyperthyroid and eye symptoms. Conclusion: Patients with initial GD show a disrupted intestinal barrier, characterized by elevated levels of leaky gut biomarkers. Increased intestinal permeability and bacterial translocation were associated with TRAb levels and hyperthyroidism in GD. Further research is required to elucidate the underlying mechanisms.