RESUMEN
BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer and is highly lethal. Clonorchis sinensis (C. sinensis) infection is an important risk factor for iCCA. Here we investigated the clinical impact and underlying molecular characteristics of C. sinensis infection-related iCCA. METHODS: We performed single-cell RNA sequencing, whole-exome sequencing, RNA sequencing, metabolomics and spatial transcriptomics in 251 patients with iCCA from three medical centers. Alterations in metabolism and the immune microenvironment of C. sinensis-related iCCAs were validated through an in vitro co-culture system and in a mouse model of iCCA. RESULTS: We revealed that C. sinensis infection was significantly associated with iCCA patients' overall survival and response to immunotherapy. Fatty acid biosynthesis and the expression of fatty acid synthase (FASN), a key enzyme catalyzing long-chain fatty acid synthesis, were significantly enriched in C. sinensis-related iCCAs. iCCA cell lines treated with excretory/secretory products of C. sinensis displayed elevated FASN and free fatty acids. The metabolic alteration of tumor cells was closely correlated with the enrichment of tumor-associated macrophage (TAM)-like macrophages and the impaired function of T cells, which led to formation of an immunosuppressive microenvironment and tumor progression. Spatial transcriptomics analysis revealed that malignant cells were in closer juxtaposition with TAM-like macrophages in C. sinensis-related iCCAs than non-C. sinensis-related iCCAs. Importantly, treatment with a FASN inhibitor significantly reversed the immunosuppressive microenvironment and enhanced anti-PD-1 efficacy in iCCA mouse models treated with excretory/secretory products from C. sinensis. CONCLUSIONS: We provide novel insights into metabolic alterations and the immune microenvironment in C. sinensis infection-related iCCAs. We also demonstrate that the combination of a FASN inhibitor with immunotherapy could be a promising strategy for the treatment of C. sinensis-related iCCAs. IMPACT AND IMPLICATIONS: Clonorchis sinensis (C. sinensis)-infected patients with intrahepatic cholangiocarcinoma (iCCA) have a worse prognosis and response to immunotherapy than non-C. sinensis-infected patients with iCCA. The underlying molecular characteristics of C. sinensis infection-related iCCAs remain unclear. Herein, we demonstrate that upregulation of FASN (fatty acid synthase) and free fatty acids in C. sinensis-related iCCAs leads to formation of an immunosuppressive microenvironment and tumor progression. Thus, administration of FASN inhibitors could significantly reverse the immunosuppressive microenvironment and further enhance the efficacy of anti-PD-1 against C. sinensis-related iCCAs.
Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Clonorquiasis , Clonorchis sinensis , Ácidos Grasos , Microambiente Tumoral , Colangiocarcinoma/inmunología , Colangiocarcinoma/parasitología , Animales , Clonorchis sinensis/inmunología , Clonorchis sinensis/fisiología , Clonorquiasis/inmunología , Neoplasias de los Conductos Biliares/inmunología , Neoplasias de los Conductos Biliares/parasitología , Ratones , Microambiente Tumoral/inmunología , Humanos , Ácidos Grasos/metabolismo , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/antagonistas & inhibidores , Acido Graso Sintasa Tipo I/metabolismo , Masculino , Femenino , Línea Celular Tumoral , Modelos Animales de Enfermedad , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismoRESUMEN
Liver metastasis is the leading cause of mortality in patients with colorectal cancer. Given the significance of both epithelial-mesenchymal transition (EMT) of tumor cells and the immune microenvironment in colorectal cancer liver metastasis (CRLM), the interplay between them could hold the key for developing improved treatment options. We employed multiomics analysis of 130 samples from 18 patients with synchronous CRLM integrated with external datasets to comprehensively evaluate the interaction between immune cells and EMT of tumor cells in liver metastasis. Single-cell RNA sequencing analysis revealed distinct distributions of nonmalignant cells between primary tumors from patients with metastatic colorectal cancer (mCRC) and non-metastatic colorectal cancer, showing that Th17 cells were predominantly enriched in the primary lesion of mCRC. TWEAK, a cytokine secreted by Th17 cells, promoted EMT by binding to receptor Fn14 on tumor cells, and the TWEAK-Fn14 interaction enhanced tumor migration and invasion. In mouse models, targeting Fn14 using CRISPR-induced knockout or lipid nanoparticle-encapsulated siRNA alleviated metastasis and prolonged survival. Mice lacking Il17a or Tnfsf12 (encoding TWEAK) exhibited fewer metastases compared with wild-type mice, while cotransfer of Th17 with tumor cells promoted liver metastasis. Higher TWEAK expression was associated with a worse prognosis in patients with colorectal cancer. In addition, CD163L1+ macrophages interacted with Th17 cells, recruiting Th17 via the CCL4-CCR5 axis. Collectively, this study unveils the role of immune cells in the EMT process and identifies TWEAK secreted by Th17 as a driver of CRLM. SIGNIFICANCE: TWEAK secreted by Th17 cells promotes EMT by binding to Fn14 on colorectal cancer cells, suggesting that blocking the TWEAK-Fn14 interaction may be a promising therapeutic approach to inhibit liver metastasis.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Animales , Ratones , Células Th17 , Citocina TWEAK , Transición Epitelial-Mesenquimal/genética , Pronóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Receptor de TWEAK/genética , Línea Celular Tumoral , Movimiento Celular/genética , Microambiente TumoralRESUMEN
Lenvatinib is emerging as the first-line therapeutic option for advanced hepatocellular carcinoma (HCC), but drug resistance remains a major hurdle for its long-term therapy efficiency in clinic. N6-methyladenosine (m6A) is the most abundant mRNA modification. Here, we aimed to investigate the modulatory effects and underlying mechanisms of m6A in lenvatinib resistance in HCC. Our data revealed that m6A mRNA modification was significantly upregulated in the HCC lenvatinib resistance (HCC-LR) cells compared to parental cells. Methyltransferase-like 3 (METTL3) was the most significantly upregulated protein among the m6A regulators. Either genetic or pharmacological inhibition of m6A methylation through METTL3 deactivation in primary resistant cell line MHCC97H and acquired resistant Huh7-LR cells decreased cell proliferation and increased cell apoptosis upon lenvatinib treatment in vitro and in vivo. In addition, the specific METTL3 inhibitor STM2457 improved tumor response to lenvatinib in multiple mouse HCC models, including subcutaneous, orthotopic and hydrodynamic models. The MeRIP-seq results showed that epidermal growth factor receptor (EGFR) was a downstream target of METTL3. EGFR overexpression abrogated the METTL3 knocked down-induced cell growth arrest upon lenvatinib treatment in HCC-LR cells. Thus, we concluded that targeting METTL3 using specific inhibitor STM2457 improved the sensitivity to lenvatinib in vitro and in vivo, indicating that METTL3 may be a potential therapeutic target to overcome lenvatinib resistance in HCC.