Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760561

RESUMEN

Clinical exome sequencing has yielded extensive disease-related missense single-nucleotide variants (SNVs) of uncertain significance, leading to diagnostic uncertainty. KCNQ4 is one of the most commonly responsible genes for autosomal dominant nonsyndromic hearing loss. According to the gnomAD cohort, approximately one in 100 people harbors missense variants in KCNQ4 (missense variants with minor allele frequency > 0.1% were excluded), but most are of unknown consequence. To prospectively characterize the function of all 4085 possible missense SNVs of human KCNQ4, we recorded the whole-cell currents using the patch-clamp technique and categorized 1068 missense SNVs as loss of function, as well as 728 loss-of-function SNVs located in the transmembrane domains. Further, to mimic the heterozygous condition in Deafness nonsyndromic autosomal dominant 2 (DFNA2) patients caused by KCNQ4 variants, we coexpressed loss-of-function variants with wild-type KCNQ4 and found 516 variants showed impaired or only partially rescued heterogeneous channel function. Overall, our functional classification is highly concordant with the auditory phenotypes in Kcnq4 mutant mice and the assessments of pathogenicity in clinical variant interpretations. Taken together, our results provide strong functional evidence to support the pathogenicity classification of newly discovered KCNQ4 missense variants in clinical genetic testing.

2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34848538

RESUMEN

Auditory transduction is mediated by chordotonal (Cho) neurons in Drosophila larvae, but the molecular identity of the mechanotransduction (MET) channel is elusive. Here, we established a whole-cell recording system of Cho neurons and showed that two transient receptor potential vanilloid (TRPV) channels, Nanchung (NAN) and Inactive (IAV), are essential for MET currents in Cho neurons. NAN and IAV form active ion channels when expressed simultaneously in S2 cells. Point mutations in the pore region of NAN-IAV change the reversal potential of the MET currents. Particularly, residues 857 through 990 in the IAV carboxyl terminus regulate the kinetics of MET currents in Cho neurons. In addition, TRPN channel NompC contributes to the adaptation of auditory transduction currents independent of its ion-conduction function. These results indicate that NAN-IAV, rather than NompC, functions as essential pore-forming subunits of the native auditory transduction channel in Drosophila and provide insights into the gating mechanism of MET currents in Cho neurons.


Asunto(s)
Proteínas de Drosophila/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Neuronas/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Potenciales de Acción/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Fenómenos Electrofisiológicos , Regulación de la Expresión Génica , Canales Iónicos/genética , Larva , Técnicas de Placa-Clamp , Mutación Puntual , Canales de Potencial de Receptor Transitorio/genética
3.
Cell Rep ; 23(1): 23-31, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617663

RESUMEN

How we sense touch is fundamental for many physiological processes. However, the underlying mechanism and molecular identity for touch sensation are largely unknown. Here, we report on defective gentle-touch behavioral responses in brv1 loss-of-function Drosophila larvae. RNAi and Ca2+ imaging confirmed the involvement of Brv1 in sensing touch and demonstrated that Brv1 mediates the mechanotransduction of class III dendritic arborization neurons. Electrophysiological recordings further revealed that the expression of Brv1 protein in HEK293T cells gives rise to stretch-activated cation channels. Purified Brv1 protein reconstituted into liposomes were found to sense stretch stimuli. In addition, co-expression studies suggested that Brv1 amplifies the response of mechanosensitive ion channel NOMPC (no mechanoreceptor potential C) to touch stimuli. Altogether, these findings demonstrate a molecular entity that mediates the gentle-touch response in Drosophila larvae, providing insights into the molecular mechanisms of touch sensation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Mecanotransducción Celular , Tacto , Canales de Potencial de Receptor Transitorio/metabolismo , Potenciales de Acción , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Receptoras Sensoriales/fisiología , Canales de Potencial de Receptor Transitorio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA