RESUMEN
Intact and healthy hair follicles are important for hair growth after hair follicle transplantation. However, effective and practical evaluation methods for the quality of hair follicles are currently lacking. In the present study, we developed a novel fast staining method for histological examination of hair follicles. The whisker follicles from mice were used to explore the staining protocols, and the final protocol for the evaluation of human hair follicles was derived from animal experiments. After extraction, human hair follicles or mouse whisker follicles were permeabilized with 0.3% Triton X-100. Subsequently, hair follicles were processed by either hematoxylin or alkaline phosphatase staining. The integrity and growth state, including the status of hair follicle stem cells and blood vessels of the extracted hair follicles, were clearly identified under a light microscope. Unhealthy hair follicles from donors or hair follicles broken during extraction were easily revealed by this method. Importantly, it took less than half an hour to obtain images of an individual hair follicle. This method is simple and practical for evaluating the quality and status of hair follicles, providing a fast-screening procedure for hair follicle transplantation.
Asunto(s)
Folículo Piloso , Vibrisas , Animales , RatonesRESUMEN
In this paper, the probabilistically shaped polar-coded multiple-input multiple-output free-space optical (MIMO-FSO) communication system with or without spatially correlated (SC) fading is investigated to improve transmission performance. The designed shaping-polar encoder can flexibly generate three typical shapes of distribution via shaping bits and be decoded in the conventional method. The achievable information rate (AIR) of MIMO-FSO systems with or without SC fading is evaluated to determine the number of shaping bits for the shaping-polar encoder. The non-pairwise distributions are demonstrated to be more suitable for turbulence channels than other distributions. The results show that the AIR of the shaped 4 × 4 systems even exceeds that of the uniform 4 × 5 systems in the low signal-to-noise ratio regions over strong turbulence channels. In terms of bit error rate performance, more than 15 dB shaping gains can be achieved by the shaped 4 × 4 systems compared to the uniform single-input single-output polar-coded systems. In addition, the shaped 4 × 4 systems outperform the uniform ones ranging from 1 dB to 1.9 dB over different atmospheric turbulence channels with or without SC fading, comparable to the uniform MIMO systems with one more physical receiver.
RESUMEN
In this Letter, we first propose and demonstrate a real-time in-band full duplex (IBFD) transmission system based on adaptive optical self-interference cancellation (OSIC). The field programmable gate array (FPGA) is used for high-speed and real-time orthogonal frequency-division multiplexing (OFDM) transmission. The hybrid criteria regular triangle (RT) algorithm is first proposed to combine signal power and the bit error rate (BER) together as the objective function to realize the adaptive control process. With this algorithm, the real-time adaptive OSIC system is able to converge and fully recover the signal of interest (SOI) within 12 sampling times, which is by far the fastest, to the best of our knowledge, convergence under the real-time transmission scenario. Experiments show that the system can achieve 28 dB cancellation depth across 0-1.45 GHz wideband, and 40 dB cancellation depth at 900 MHz, 2.4 GHz, and 5 GHz, which is the best cancellation performance in current real-time adaptive OSIC schemes and shows the potential of our system in different commercial applications.
RESUMEN
A wideband multipath self-interference cancellation (SIC) system employing both dual-drive Mach-Zehnder modulator-based analog SIC and least mean square (LMS) algorithm-based pre-adaptive filter digital SIC is proposed and demonstrated for the cancellation of multipath self-interference (SI) and facilitation of in-band full-duplex (IBFD) orthogonal frequency-division multiplexing (OFDM) signal transmission. The multipath effect is an unavoidable challenge in SIC due to the dynamic and unpredictable properties in each path, as well as the need for separate matching components for compensating for each path. In this Letter, an LMS algorithm-based adaptive filter is used as a pre-equalizer to adapt and generate the matching signal to the closest approximate of the multipath SI signal. The adaptation is based on the minimization of the error signal generated from the matching signal and multipath SI signal in the LMS algorithm. With the introduction of the LMS adaptive filter to the analog SIC, an additional 9 dB cancellation improvement is obtained, resulting in a total of 32 dB cancellation depth over a cancellation bandwidth of 2.7 GHz at a center frequency of 1.65 GHz. To the best of our knowledge, the achieved performance is by far the widest cancellation bandwidth in a multipath SIC system, which is essential in a large bandwidth and high data rate transmission system. With the help of the proposed LMS adaptive filter digital SIC assisted analog SIC located at the remote node, power-efficient IBFD transmission of an OFDM signal through a 25 km fiber is experimentally demonstrated with a 6 dB bit error rate and 8% error vector magnitude improvements.
RESUMEN
An optically-enabled radio frquency (RF) self-interference cancellation system is demonstrated for over-the-air in-band full duplex transmission, based on a signal-of-interest (SOI) driven regular triangle algorithm. Since the goal of a self-interference cancellation system is to retrieve the SOI that is masked by the in-band interference signal, using the SOI quality as the driven parameter for optimizing the self-interference cancellation performance is a natural and effective way to allow the system to adapt to changes and obtain the best cancellation performance. Since regular triangle algorithm has short iteration time, bursts of pseudo-random binary sequence would be used between real data transmission for optimizing the self-interference cancellation performance. The adaptive regular triangle algorithm optimizes the cancellation setting such that the in-band interference can be cancelled to a minimum, i.e., down to the noise floor. During the over-the-air experiment, 22 dB of cancellation depth is obtained over a 300 MHz bandwidth at 18.35 GHz without the need of digital self-interference cancellation.
RESUMEN
In this paper, we propose an adaptive optical self-interference cancellation using regular triangle algorithm for in-band full-duplex systems. By using this algorithm, the manual adjustment of the tunable optical time delay line and attenuator is replaced with the adaptive program to change the delay and attenuation for achieving optimal cancellation point. The adjustment process is simplified as a convex function problem. We choose to attain the optimal cancellation point by directly and continuously sampling the power of the signal after cancellation and in turn adjust the time delay and attenuation according to the algorithm. In this way, the two paths in the self-interference cancellation system are precisely and automatically matched. By using our proposed algorithm, the interference signal over 300-MHz wideband is diminished to the noise floor, attaining 20-25 dB cancellation depth adaptively. Compared with other existing algorithms in both the experiment and simulation, our proposed regular triangle algorithm reaches the optimal point faster with 10-30% less number of samples from the near start region, and lowers 40-60% less number of samples from the farther start region.