Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(8): 4523-4540, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38477398

RESUMEN

In archaea and eukaryotes, the evolutionarily conserved KEOPS is composed of four core subunits-Kae1, Bud32, Cgi121 and Pcc1, and a fifth Gon7/Pcc2 that is found in fungi and metazoa. KEOPS cooperates with Sua5/YRDC to catalyze the biosynthesis of tRNA N6-threonylcarbamoyladenosine (t6A), an essential modification needed for fitness of cellular organisms. Biochemical and structural characterizations of KEOPSs from archaea, yeast and humans have determined a t6A-catalytic role for Kae1 and auxiliary roles for other subunits. However, the precise molecular workings of KEOPSs still remain poorly understood. Here, we investigated the biochemical functions of A. thaliana KEOPS and determined a cryo-EM structure of A. thaliana KEOPS dimer. We show that A. thaliana KEOPS is composed of KAE1, BUD32, CGI121 and PCC1, which adopts a conserved overall arrangement. PCC1 dimerization leads to a KEOPS dimer that is needed for an active t6A-catalytic KEOPS-tRNA assembly. BUD32 participates in direct binding of tRNA to KEOPS and modulates the t6A-catalytic activity of KEOPS via its C-terminal tail and ATP to ADP hydrolysis. CGI121 promotes the binding of tRNA to KEOPS and potentiates the t6A-catalytic activity of KEOPS. These data and findings provide insights into mechanistic understanding of KEOPS machineries.


Asunto(s)
Proteínas de Arabidopsis , Complejos Multiproteicos , ARN de Planta , ARN de Transferencia , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Microscopía por Crioelectrón , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , ARN de Transferencia/metabolismo , ARN de Transferencia/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Complejos Multiproteicos/metabolismo , ARN de Planta/química , ARN de Planta/metabolismo
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(8): 2171-5, 2011 Aug.
Artículo en Zh | MEDLINE | ID: mdl-22007411

RESUMEN

The spectrum properties of four novel 1, 4, 8, 11, 15, 18, 22, 25-octaoxybutyl copper phthalocyanine; 1,4,8,11,15,18, 22, 25-octamethoxybutanoate manganese phthalocyanine; 1, 4, 8, 11, 15, 18, 22, 25-octamethoxybutanoate copper phthalocyanine; 1, 4, 8, 11, 15, 18, 22, 25-octamethoxybutanoate zinc phthalocyanine were investigated by infrared, fluorescence and UV-visible spectrum in the the paper. There is no rule in the infrared spectrum of these octa-substituted phthalocyanines. The orders of the Q band, B band and Pc dimer band are different among the above Octa-substituted Phthalocyanines in the UV and fluorescence spectra. The reason is related to the interaction between the ligand and the central metal of these octa-substituted phthalocyanines.

3.
Protein Sci ; 29(5): 1242-1249, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32105377

RESUMEN

Urea amidolyase (UA), a bifunctional enzyme that is widely distributed in bacteria, fungi, algae, and plants, plays a pivotal role in the recycling of nitrogen in the biosphere. Its substrate urea is ultimately converted to ammonium, via successive catalysis at the C-terminal urea carboxylase (UC) domain and followed by the N-terminal allophanate hydrolyse (AH) domain. Although our previous studies have shown that Kluyveromyces lactis UA (KlUA) functions efficiently as a homodimer, the architecture of the full-length enzyme remains unresolved. Thus how the biotin carboxyl carrier protein (BCCP) domain is transferred within the UC domain remains unclear. Here we report the structures of full-length KlUA in its homodimer form in three different functional states by negatively-stained single-particle electron microscopy. We report here that the ADP-bound structure with or without urea shows two possible locations of BCCP with preferred asymmetry, and that when BCCP is attached to the carboxyl transferase domain of one monomer, it is attached to the biotin carboxylase domain in the second domain. Based on this observation, we propose a BCCP-swinging model for biotin-dependent carboxylation mechanism of this enzyme.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Imagen Individual de Molécula , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Biocatálisis , Ligasas de Carbono-Nitrógeno/química , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/metabolismo , Humanos , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA