RESUMEN
Integrating high charge-carrier mobility and low-threshold lasing action in an organic semiconductor is crucial for the realization of an electrically pumped laser, but remains a great challenge. Herein, we present an organic semiconductor, named as 2,7-di(2-naphthyl)-9H-fluorene (LD-2), which shows an unexpected high charge-carrier mobility of 2.7â cm2 â V-1 s-1 and low-threshold lasing characteristic of 9.43â µJ cm-2 and 9.93â µJ cm-2 and high-quality factor (Q) of 2131 and 1684 at emission peaks of 420 and 443â nm, respectively. Detailed theoretical calculations and photophysical data analysis demonstrate that a large intermolecular transfer integral of 10.36-45.16â meV together with a fast radiative transition rate of 8.0×108 â s-1 are responsible for the achievement of the superior integrated optoelectronic properties in the LD-2 crystal. These optoelectronic performances of LD-2 are among the highest reported low-threshold lasing organic semiconductors with efficient charge transport, suggesting its promise for research of electrically pumped organic lasers (EPOLs).
RESUMEN
Copper tetracyanoquinodimethane (CuTCNQ) has been investigated around 40 years as a representative bistable material. Meanwhile, micro/nanostructures of CuTCNQ is considered as the prototype of molecular electronics, which have attracted the world's attention and shown great potential applications in nanoelectronics. In this review, methods for synthesis of CuTCNQ micro/nanostructures are first summarized briefly. Then, the strategies for controlling morphologies and sizes of CuTCNQ micro/nanostructures are highlighted. Afterwards, the devices based on these micro/nanostructures are reviewed. Finally, an outlook of future research directions and challenges in this area is presented.
RESUMEN
Sensing and recognizing invisible ultraviolet (UV) light is vital for exploiting advanced artificial visual perception system. However, due to the uncertainty of the natural environment, the UV signal is very hard to be detected and perceived. Here, inspired by the tetrachromatic visual system, we report a controllable UV-ultrasensitive neuromorphic vision sensor (NeuVS) that uses organic phototransistors (OPTs) as the working unit to integrate sensing, memory and processing functions. Benefiting from asymmetric molecular structure and unique UV absorption of the active layer, the as fabricated UV-ultrasensitive NeuVS can detect 370 nm UV-light with the illumination intensity as low as 31 nW cm-2, exhibiting one of the best optical figures of merit in UV-sensitive neuromorphic vision sensors. Furthermore, the NeuVS array exbibits good image sensing and memorization capability due to its ultrasensitive optical detection and large density of charge trapping states. In addition, the wavelength-selective response and multi-level optical memory properties are utilized to construct an artificial neural network for extract and identify the invisible UV information. The NeuVS array can perform static and dynamic image recognition from the original color image by filtering red, green and blue noise, and significantly improve the recognition accuracy from 46 to 90%.
RESUMEN
Conductive polymers are considered promising electrode materials for organic transistors, but the reported devices with conductive polymer electrodes generally suffer from considerable contact resistance. Currently, it is still highly challenging to pattern conductive polymer electrodes on organic semiconductor surfaces with good structure and interface quality. Herein, we develop an in situ polymerization strategy to directly pattern the top-contacted polypyrrole (PPy) electrodes on hydrophobic surfaces of organic semiconductors by microchannel templates, which is also applicable on diverse hydrophobic and hydrophilic surfaces. Remarkably, a width-normalized contact resistance as low as 1.01 kΩ·cm is achieved in the PPy-contacted transistors. Both p-type and n-type organic field-effect transistors (OFETs) exhibit ideal electrical characteristics, including almost hysteresis-free, low threshold voltage, and good stability under long-term test. The facile patterning method and high device performance indicate that the in situ polymerization strategy in confined microchannels has application prospects in all-organic, transparent, and flexible electronics.