Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(8): e2217150120, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791101

RESUMEN

We have structurally characterized the liquid crystal (LC) phase that can appear as an intermediate state when a dielectric nematic, having polar disorder of its molecular dipoles, transitions to the almost perfectly polar-ordered ferroelectric nematic. This intermediate phase, which fills a 100-y-old void in the taxonomy of smectic LCs and which we term the "smectic ZA," is antiferroelectric, with the nematic director and polarization oriented parallel to smectic layer planes, and the polarization alternating in sign from layer to layer with a 180 Å period. A Landau free energy, originally derived from the Ising model of ferromagnetic ordering of spins in the presence of dipole-dipole interactions, and applied to model incommensurate antiferroelectricity in crystals, describes the key features of the nematic-SmZA-ferroelectric nematic phase sequence.

2.
Nat Mater ; 23(5): 688-694, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38413812

RESUMEN

Enabled by surface-mediated equilibration, physical vapour deposition can create high-density stable glasses comparable with liquid-quenched glasses aged for millions of years. Deposition is often performed at various rates and temperatures on rigid substrates to control the glass properties. Here we demonstrate that on soft, rubbery substrates, surface-mediated equilibration is enhanced up to 170 nm away from the interface, forming stable glasses with densities up to 2.5% higher than liquid-quenched glasses within 2.5 h of deposition. Gaining similar properties on rigid substrates would require 10 million times slower deposition, taking ~3,000 years. Controlling the modulus of the rubbery substrate provides control over the glass structure and density at constant deposition conditions. These results underscore the significance of substrate elasticity in manipulating the properties of the mobile surface layer and thus the glass structure and properties, allowing access to deeper states of the energy landscape without prohibitively slow deposition rates.

3.
Proc Natl Acad Sci U S A ; 119(47): e2210062119, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375062

RESUMEN

We report the observation of the smectic AF, a liquid crystal phase of the ferroelectric nematic realm. The smectic AF is a phase of small polar, rod-shaped molecules that form two-dimensional fluid layers spaced by approximately the mean molecular length. The phase is uniaxial, with the molecular director, the local average long-axis orientation, normal to the layer planes, and ferroelectric, with a spontaneous electric polarization parallel to the director. Polarization measurements indicate almost complete polar ordering of the ∼10 Debye longitudinal molecular dipoles, and hysteretic polarization reversal with a coercive field ∼2 × 105 V/m is observed. The SmAF phase appears upon cooling in two binary mixtures of partially fluorinated mesogens: 2N/DIO, exhibiting a nematic (N)-smectic ZA (SmZA)-ferroelectric nematic (NF)-SmAF phase sequence, and 7N/DIO, exhibiting an N-SmZA-SmAF phase sequence. The latter presents an opportunity to study a transition between two smectic phases having orthogonal systems of layers.

4.
Small ; 20(30): e2311832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38386283

RESUMEN

The molecular foundations of epidermal cell wall mechanics are critical for understanding structure-function relationships of primary cell walls in plants and facilitating the design of bioinspired materials. To uncover the molecular mechanisms regulating the high extensibility and strength of the cell wall, the onion epidermal wall is stretched uniaxially to various strains and cell wall structures from mesoscale to atomic scale are characterized. Upon longitudinal stretching to high strain, epidermal walls contract in the transverse direction, resulting in a reduced area. Atomic force microscopy shows that cellulose microfibrils exhibit orientation-dependent rearrangements at high strains: longitudinal microfibrils are straightened out and become highly ordered, while transverse microfibrils curve and kink. Small-angle X-ray scattering detects a 7.4 nm spacing aligned along the stretch direction at high strain, which is attributed to distances between individual cellulose microfibrils. Furthermore, wide-angle X-ray scattering reveals a widening of (004) lattice spacing and contraction of (200) lattice spacing in longitudinally aligned cellulose microfibrils at high strain, which implies longitudinal stretching of the cellulose crystal. These findings provide molecular insights into the ability of the wall to bear additional load after yielding: the aggregation of longitudinal microfibrils impedes sliding and enables further stretching of the cellulose to bear increased loads.


Asunto(s)
Pared Celular , Celulosa , Microscopía de Fuerza Atómica , Epidermis de la Planta , Pared Celular/química , Pared Celular/ultraestructura , Epidermis de la Planta/citología , Epidermis de la Planta/química , Celulosa/química , Microfibrillas/química , Difracción de Rayos X , Dispersión del Ángulo Pequeño , Cebollas/citología , Cebollas/química , Estrés Mecánico
5.
Phys Biol ; 21(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38452380

RESUMEN

Understanding the structural and functional development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is essential to engineering cardiac tissue that enables pharmaceutical testing, modeling diseases, and designing therapies. Here we use a method not commonly applied to biological materials, small angle x-ray scattering, to characterize the structural development of hiPSC-CMs within three-dimensional engineered tissues during their preliminary stages of maturation. An x-ray scattering experimental method enables the reliable characterization of the cardiomyocyte myofilament spacing with maturation time. The myofilament lattice spacing monotonically decreases as the tissue matures from its initial post-seeding state over the span of 10 days. Visualization of the spacing at a grid of positions in the tissue provides an approach to characterizing the maturation and organization of cardiomyocyte myofilaments and has the potential to help elucidate mechanisms of pathophysiology, and disease progression, thereby stimulating new biological hypotheses in stem cell engineering.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miofibrillas , Humanos , Rayos X , Diferenciación Celular/fisiología , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Ingeniería de Tejidos/métodos
6.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34330828

RESUMEN

When aged below the glass transition temperature, [Formula: see text], the density of a glass cannot exceed that of the metastable supercooled liquid (SCL) state, unless crystals are nucleated. The only exception is when another polyamorphic SCL state exists, with a density higher than that of the ordinary SCL. Experimentally, such polyamorphic states and their corresponding liquid-liquid phase transitions have only been observed in network-forming systems or those with polymorphic crystalline states. In otherwise simple liquids, such phase transitions have not been observed, either in aged or vapor-deposited stable glasses, even near the Kauzmann temperature. Here, we report that the density of thin vapor-deposited films of N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) can exceed their corresponding SCL density by as much as 3.5% and can even exceed the crystal density under certain deposition conditions. We identify a previously unidentified high-density supercooled liquid (HD-SCL) phase with a liquid-liquid phase transition temperature ([Formula: see text]) ∼35 K below the nominal glass transition temperature of the ordinary SCL. The HD-SCL state is observed in glasses deposited in the thickness range of 25 to 55 nm, where thin films of the ordinary SCL have exceptionally enhanced surface mobility with large mobility gradients. The enhanced mobility enables vapor-deposited thin films to overcome kinetic barriers for relaxation and access the HD-SCL state. The HD-SCL state is only thermodynamically favored in thin films and transforms rapidly to the ordinary SCL when the vapor deposition is continued to form films with thicknesses more than 60 nm.

7.
Phys Rev Lett ; 130(22): 228101, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37327427

RESUMEN

An associative polymer carries many stickers that can form reversible associations. For more than 30 years, the understanding has been that reversible associations change the shape of linear viscoelastic spectra by adding a rubbery plateau in the intermediate frequency range, at which associations have not yet relaxed and thus effectively act as crosslinks. Here, we design and synthesize new classes of unentangled associative polymers carrying unprecedentedly high fractions of stickers, up to eight per Kuhn segment, that can form strong pairwise hydrogen bonding of ∼20k_{B}T without microphase separation. We experimentally show that reversible bonds significantly slow down the polymer dynamics but nearly do not change the shape of linear viscoelastic spectra. This behavior can be explained by a renormalized Rouse model that highlights an unexpected influence of reversible bonds on the structural relaxation of associative polymers.


Asunto(s)
Polímeros , Polímeros/química , Enlace de Hidrógeno
8.
Soft Matter ; 19(18): 3257-3266, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37060147

RESUMEN

Randomly stacked 2D hexagonal close-packed (RHCP) layer structures are frequently observed in colloids and other material systems but are considered metastable. We report a stable RHCP phase domain of poly(butadiene-b-ethylene oxide) (PB-PEO) diblock copolymer micellar colloids in water. The stable RHCP colloidal crystals emerge in the middle of a continuously transiting phase domain of close-packed PB-PEO colloids from a face-centered cubic (FCC) polytype to a HCP polytype. We attribute the stability of RHCP structures to two competing contributions, entropic preference for FCC lattices and long PEO corona chains stabilizing HCP lattices. When these two contributions become comparable in the phase space, thermal fluctuation randomizes the stacking order of the 2D-HCP layers, and RHCP orders are stabilized. The continuously transiting close-packed structures of PB-PEO colloids with stable RHCP states suggest that similar structural transitions and equivalent RHCP states may occur in other polytypic crystal systems because polytypic crystals have the common crystal construction rule, i.e., stacking 2D-HCP lattice layer groups in different orders.

9.
Proc Natl Acad Sci U S A ; 117(9): 4749-4757, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071249

RESUMEN

Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid-lipid and lipid-protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]-cholesterol) and ternary (DPPC-1,2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-glycero-3-phosphocholine [DOPC/POPC]-cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid-lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/química , Membrana Celular/metabolismo , Fenómenos Químicos , Colesterol/química , Fonones
10.
Biomacromolecules ; 22(10): 4274-4283, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34541856

RESUMEN

The nano- to microscale structures at the interface between materials can define the macroscopic material properties. These structures are extremely difficult to investigate for complex material systems, such as cellulose-rich materials. The development of new model cellulose materials and measuring techniques has opened new possibilities to resolve this problem. We present a straightforward approach combining micro-focusing grazing-incidence small-angle X-ray scattering and atomic force microscopy (AFM) to investigate the structural rearrangements of cellulose/cellulose interfaces in situ during drying. Based on the results, we propose that molecular interdiffusion and structural rearrangement play a major role in the development of the properties of the cellulose/cellulose interphase; this model is representative of the development of the properties of joint/contact points between macroscopic cellulose fibers.


Asunto(s)
Celulosa , Incidencia , Interfase , Difracción de Rayos X , Rayos X
11.
Langmuir ; 36(18): 4887-4896, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32259453

RESUMEN

In biological membranes, lipid rafts are now thought to be transient and nanoscopic. However, the mechanism responsible for these nanoscopic assemblies remains poorly understood, even in the case of model membranes. As a result, it has proven extremely challenging to probe the physicochemical properties of lipid rafts at the molecular level. Here, we use all-atom molecular dynamics (MD) simulations and inelastic X-ray scattering (IXS), an intrinsically nanoscale technique, to directly probe the energy transfer and collective short-wavelength dynamics (phonons) of biologically relevant model membranes. We show that the nanoscale propagation of stress in lipid rafts takes place in the form of collective motions made up of longitudinal (compression waves) and transverse (shear waves) molecular vibrations. Importantly, we provide a molecular picture for the so-called van der Waals mediated "force from lipid" [Anishkin, A. et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 7898], a key parameter for the ionic channel mechano-transduction and the mechanism for the lipid transfer of molecular level stress [Aponte-Santamaría, C. et al. J. Am. Chem. Soc. 2017, 139, 13588]. Specifically, we describe how lipid rafts are formed and maintained through the propagation of molecular stress, lipid raft rattling dynamics, and a relaxation process. Eventually, the rafts dissipate through the self-diffusion of lipids making up the rafts. We also show that the molecular stress and viscoelastic properties of transient lipid rafts can be modulated through the use of hydrophobic biomolecules such as melatonin and tryptophan. Ultimately, the herein proposed mechanism describing the molecular interactions for the formation and dissolution of lipid rafts may offer insights as to how lipid rafts enable biological function.


Asunto(s)
Microdominios de Membrana , Simulación de Dinámica Molecular , Membrana Celular , Difusión , Lípidos
12.
Biomacromolecules ; 21(3): 1186-1194, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32003982

RESUMEN

The semicrystalline protein structure and impressive mechanical properties of major ampullate (MA) spider silk make it a promising natural alternative to polyacrylonitrile (PAN) fibers for carbon fiber manufacture. However, when annealed using a similar procedure to carbon fiber production, the tensile strength and Young's modulus of MA silk decrease. Despite this, MA silk fibers annealed at 600 °C remain stronger and tougher than similarly annealed PAN but have a lower Young's modulus. Although MA silk and PAN graphitize to similar extents, annealing disrupts the hydrogen bonding that controls crystal alignment within MA silk. Consequently, unaligned graphite crystals form in annealed MA silk, causing it to weaken, while graphite crystals in PAN maintain alignment along the fiber axis, strengthening the fibers. These shortcomings of spider silk when annealed provide insights into the selection and design of future alternative carbon fiber precursors.


Asunto(s)
Seda , Arañas , Animales , Módulo de Elasticidad , Resistencia a la Tracción
13.
J Synchrotron Radiat ; 25(Pt 6): 1877-1892, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407201

RESUMEN

Sirepo, a browser-based GUI for X-ray source and optics simulations, is presented. Such calculations can be performed using SRW (Synchrotron Radiation Workshop), which is a physical optics computer code, allowing simulation of entire experimental beamlines using the concept of a `virtual beamline' with accurate treatment of synchrotron radiation generation and propagation through the X-ray optical system. SRW is interfaced with Sirepo by means of a Python application programming interface. Sirepo supports most of the optical elements currently used at beamlines, including recent developments in SRW. In particular, support is provided for the simulation of state-of-the-art X-ray beamlines, exploiting the high coherence and brightness of modern light source facilities. New scientific visualization and reporting capabilities have been recently implemented within Sirepo, as well as automatic determination of electron beam and undulator parameters. Publicly available community databases can be dynamically queried for error-free access to material characteristics. These computational tools can be used for the development and commissioning of new X-ray beamlines and for testing feasibility and optimization of experiments. The same interface can guide simulation on a local computer, a remote server or a high-performance cluster. Sirepo is available online and also within the NSLS-II firewall, with a growing number of users at other light source facilities. Our open source code is available on GitHub.

15.
Nano Lett ; 17(6): 3870-3876, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28548861

RESUMEN

The investigation of phononic collective excitations in soft matter systems at the molecular scale has always been challenging due to limitations of experimental techniques in resolving low-energy modes. Recent advances in inelastic X-ray scattering (IXS) enabled the study of such systems with unprecedented spectral contrast at meV excitation energies. In particular, it has become possible to shed light on the low-energy collective motions in materials whose morphology and phase behavior can easily be manipulated, such as mesogenic systems. The understanding of collective mode behavior with a Q-dependence is the key to implement heat management based on the control of a sample structure. The latter has great potential for a large number of energy-inspired innovations. As a first step toward this goal, we carried out high contrast IXS measurements on a liquid crystal sample, D7AOB, which exhibits solid-like dynamic features, such as the coexistence of longitudinal and transverse phononic modes. For the first time, we found that these terahertz phononic excitations persist in the crystal, smectic A, and isotropic phases. Furthermore, the intermediate smectic A phase is shown to support a van der Waals-mediated nonhydrodynamic mode with an optical-like phononic behavior. The tunability of the collective excitations at nanometer-terahertz scales via selection of the sample mesogenic phase represents a new opportunity to manipulate optomechanical properties of soft metamaterials.

16.
ACS Polym Au ; 4(2): 98-108, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38618003

RESUMEN

Three-dimensional (3D) printing of elastomers enables the fabrication of many technologically important structures and devices. However, there remains a critical need for the development of reprocessable, solvent-free, soft elastomers that can be printed without the need for post-treatment. Herein, we report modular soft elastomers suitable for direct ink writing (DIW) printing by physically cross-linking associative polymers with a high fraction of reversible bonds. We designed and synthesized linear-associative-linear (LAL) triblock copolymers; the middle block is an associative polymer carrying amide groups that form double hydrogen bonding, and the end blocks aggregate to hard glassy domains that effectively act as physical cross-links. The amide groups do not aggregate to nanoscale clusters and only slow down polymer dynamics without changing the shape of the linear viscoelastic spectra; this enables molecular control over energy dissipation by varying the fraction of the associative groups. Increasing the volume fraction of the end linear blocks increases the network stiffness by more than 100 times without significantly compromising the extensibility. We created elastomers with Young's moduli ranging from 8 kPa to 8 MPa while maintaining the tensile breaking strain around 150%. Using a high-temperature DIW printing platform, we transformed our elastomers to complex, highly deformable 3D structures without involving any solvent or post-print processing. Our elastomers represent the softest melt reprocessable materials for DIW printing. The developed LAL polymers synergize emerging homogeneous associative polymers with a high fraction of reversible bonds and classical block copolymer self-assembly to form a dual-cross-linked network, providing a versatile platform for the modular design and development of soft melt reprocessable elastomeric materials for practical applications.

17.
Sci Rep ; 14(1): 4473, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396051

RESUMEN

We present a new ferroelectric nematic material, 4-((4'-((trans)-5-ethyloxan-2-yl)-2',3,5,6'-tetrafluoro-[1,1'-biphenyl]-4-yl)difluoromethoxy)-2,6-difluorobenzonitrile (AUUQU-2-N) and its higher homologues, the molecular structures of which include fluorinated building blocks, an oxane ring, and a terminal cyano group, all contributing to a large molecular dipole moment of about 12.5 D. We observed that AUUQU-2-N has three distinct liquid crystal phases, two of which were found to be polar phases with a spontaneous electric polarization Ps of up to 6 µC cm-2. The highest temperature phase is a common enantiotropic nematic (N) exhibiting only field-induced polarization. The lowest-temperature, monotropic phase proved to be a new example of the ferroelectric nematic phase (NF), evidenced by a single-peak polarization reversal current response, a giant imaginary dielectric permittivity on the order of 103, and the absence of any smectic layer X-ray diffraction peaks. The ordinary nematic phase N and the ferroelectric nematic phase NF are separated by an antiferroelectric liquid crystal phase which has low permittivity and a polarization reversal current exhibiting a characteristic double-peak response. In the polarizing light microscope, this antiferroelectric phase shows characteristic zig-zag defects, evidence of a layered structure. These observations suggest that this is another example of the recently discovered smectic ZA (SmZA) phase, having smectic layers with the molecular director parallel to the layer planes. The diffraction peaks from the smectic layering have not been observed to date but detailed 2D X-ray studies indicate the presence of additional short-range structures including smectic C-type correlations in all three phases-N, SmZA and NF-which may shed new light on the understanding of polar and antipolar order in these phases.

18.
JACS Au ; 4(1): 177-188, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38274264

RESUMEN

Plant cell walls are abundant sources of materials and energy. Nevertheless, cell wall nanostructure, specifically how pectins interact with cellulose and hemicelluloses to construct a robust and flexible biomaterial, is poorly understood. X-ray scattering measurements are minimally invasive and can reveal ultrastructural, compositional, and physical properties of materials. Resonant X-ray scattering takes advantage of compositional differences by tuning the energy of the incident X-ray to absorption edges of specific elements in a material. Using Tender Resonant X-ray Scattering (TReXS) at the calcium K-edge to study hypocotyls of the model plant, Arabidopsis thaliana, we detected distinctive Ca features that we hypothesize correspond to previously unreported Ca-Homogalacturonan (Ca-HG) nanostructures. When Ca-HG structures were perturbed by chemical and enzymatic treatments, cellulose microfibrils were also rearranged. Moreover, Ca-HG nanostructure was altered in mutants with abnormal cellulose, pectin, or hemicellulose content. Our results indicate direct structural interlinks between components of the plant cell wall at the nanoscale and reveal mechanisms that underpin both the structural integrity of these components and the molecular architecture of the plant cell wall.

19.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37144942

RESUMEN

The ability of the soft matter interfaces beamline at National Synchrotron Light Source II to access x-ray energy in the tender x-ray regime, i.e., from 2.1 to 5 keV, enables new resonant x-ray scattering studies at the sulfur K-edge and others. We present a new approach to correct data acquired in the tender x-ray regime with a Pilatus3 detector in order to improve the data quality and to correct the various artifacts inherent to hybrid pixel detectors, such as variations in modules' efficiency or noisy detector module junctions. This new flatfielding significantly enhances the data quality and enables detection of weak scattering signals.

20.
Acta Biomater ; 160: 176-186, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706852

RESUMEN

The multiscale structure of biomaterials enables their exceptional mechanical robustness, yet the impact of each constituent at their relevant length scale remains elusive. We used SAXD analysis to expose the intact chitin-fiber architecture within the exoskeleton on a scorpion's claw, revealing varying orientations, including Bouligand and unidirectional regions different from other arthropod species. We uncovered the contribution of individual components' constituent behavior to its mechanical properties from the micro- to the nanoscale. At the microscale, in-situ micromechanical experiments were used to determine site-specific stiffness, strength, and failure of the biocomposite due to fiber orientation, while metal-crosslinking of proteins is characterized via fluorescence maps. At the constituent level, combined with FEA simulations, we uncovered the behavior of fiber-matrix deformation with fiber diameter <53.7 nm and protein modulus in the range 1.4-11 MPa. The unveiled microstructure-mechanics relationship sheds light on the evolved structural functionalities and constituents' interactions within the scorpion cuticle. STATEMENT OF SIGNIFICANCE: The pincer exoskeleton is a fundamental part of the scorpion's body due to its multifunctionality. Precise structural and compositional analysis within the hierarchy is paramount to understand the fundamentals of the mechanical properties of the composite exoskeleton. Here, we expose the intact chitin-fiber architecture of the pincer exoskeleton using nondestructive analysis. In-situ mechanical characterization was performed at nanometer levels within the exoskeleton hierarchy, which complemented with simulations, uncovered the elastic modulus of the protein matrix. Our findings confirm the presence and distribution of metal ions and their role as reinforcements in the protein matrix via ligand coordinate bonds. In future work, these findings can be of great potential to inspire the design of composite materials.


Asunto(s)
Dispositivo Exoesqueleto , Escorpiones , Animales , Tobillo , Proteínas , Quitina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA