Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 213: 116690, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32119987

RESUMEN

BACKGROUND: Previous histopathology and MRI studies have addressed the differences between focal white matter lesions (FWML) and diffusely abnormal white matter (DAWM) in multiple sclerosis (MS). These two categories of white matter T2-weighted (T2w) hyperintensity show different degrees of demyelination, axonal loss and immune cell density on histopathology, potentially offering distinct correlations with symptoms. OBJECTIVES: 1) To automate the separation of FWML and DAWM using T2w MRI intensity thresholds and to investigate their differences in magnetization transfer ratios (MTR), which are sensitive to myelin content; 2) to correlate MTR values in FWML and DAWM with normalized signal intensity values on fluid attenuated inversion recovery (FLAIR), T2w, and T1-weighted (T1w) contrasts, as well as with the ratio of T2w/T1w normalized values, in order to determine whether these normalized intensities can be used when MTR is not available. METHODS: We used three MRI datasets: datasets 1 and 2 had 20 MS participants each, scanned with similar 3T MRI protocols in 2 centers, including: 3D T1w (MP2RAGE), 3D FLAIR, 2D T2w, and 3D magnetization-transfer (MT) contrasts. Dataset 3 consisted of 67 scans of participants enrolled in a multisite study and had T1w and T2w contrasts. We used the first dataset to develop an automated technique to separate FWML from DAWM and the second and third to validate the automation of the technique. We applied the automatic thresholds to all datasets to assess the overlap of the manual and the automated masks using Dice kappa. We also assessed differences in mean MTR values between NAWM, DAWM and FWML, using manually and automatically derived masks in datasets 1 and 2. Finally, we used the mean intensity of manually-traced areas of NAWM on T2w images as the normalization factor for each MRI contrast, and compared these with the normalized-intensity values obtained using automated NAWM (A-NAWM) masks as the normalization factor. ANOVA assessed the MTR differences across tissue types. Paired t-test or Wilcoxon signed-ranked test assessed FWML and DAWM differences between manual and automatically derived volumes. Pearson correlations assessed the relationship between MTR and normalized intensity values in the manual and automatically derived masks. RESULTS: The mean Dice-kappa values for dataset 1 were: 0.79 for DAWM masks and 0.90 for FWML masks. In dataset 2, mean Dice-kappa values were: 0.78 for DAWM and 0.87 for FWML. In dataset 3, mean Dice-kappa values were 0.72 for DAWM, and 0.87 for FWML. Manual and automated DAWM and FWML volumes were not significantly different in all datasets. MTR values were significantly lower in manually and automatically derived FWML compared with DAWM in both datasets (dataset 1 manual: F â€‹= â€‹111,08, p â€‹< â€‹0.0001; automated: F â€‹= â€‹153.90, p â€‹< â€‹0.0001; dataset 2 manual: F â€‹= â€‹31.25, p â€‹< â€‹0.0001; automated: F â€‹= â€‹74.04, p â€‹< â€‹0.0001). In both datasets, manually derived FWML and DAWM MTR values showed significant correlations with normalized T1w (r â€‹= â€‹0.77 to 0.94) intensities. CONCLUSIONS: The separation of FWML and DAWM on MRI scans of MS patients using automated intensity thresholds on T2w images is feasible. MTR values are significantly lower in FWML than DAWM, and DAWM values are significantly lower than NAWM, reflecting potentially greater demyelination within focal lesions. T1w normalized intensity values exhibit a significant correlation with MTR values in both tissues of interest and could be used as a proxy to assess demyelination when MTR or other myelin-sensitive images are not available.


Asunto(s)
Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Automatización , Encéfalo/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/patología , Sustancia Blanca/patología
2.
Front Neuroimaging ; 1: 940849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37555147

RESUMEN

Introduction: Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts. Methods: We first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2* MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network. Results: The proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively. Discussion: The proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity.

3.
Neuroimage Clin ; 36: 103204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36155321

RESUMEN

INTRODUCTION: White matter hyperintensities (WMHs) are common magnetic resonance imaging (MRI) findings in the aging population in general, as well as in patients with neurodegenerative diseases. They are known to exacerbate the cognitive deficits and worsen the clinical outcomes in the patients. However, it is not well-understood whether there are disease-specific differences in prevalence and distribution of WMHs in different neurodegenerative disorders. METHODS: Data included 976 participants with cross-sectional T1-weighted and fluid attenuated inversion recovery (FLAIR) MRIs from the Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) cohort of the Canadian Consortium on Neurodegeneration in Aging (CCNA) with eleven distinct diagnostic groups: cognitively intact elderly (CIE), subjective cognitive impairment (SCI), mild cognitive impairment (MCI), vascular MCI (V-MCI), Alzheimer's dementia (AD), vascular AD (V-AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), cognitively intact elderly with Parkinson's disease (PD-CIE), cognitively impaired Parkinson's disease (PD-CI), and mixed dementias. WMHs were segmented using a previously validated automated technique. WMH volumes in each lobe and hemisphere were compared against matched CIE individuals, as well as each other, and between men and women. RESULTS: All cognitively impaired diagnostic groups had significantly greater overall WMH volumes than the CIE group. Vascular groups (i.e. V-MCI, V-AD, and mixed dementia) had significantly greater WMH volumes than all other groups, except for FTD, which also had significantly greater WMH volumes than all non-vascular groups. Women tended to have lower WMH burden than men in most groups and regions, controlling for age. The left frontal lobe tended to have a lower WMH burden than the right in all groups. In contrast, the right occipital lobe tended to have greater WMH volumes than the left. CONCLUSIONS: There were distinct differences in WMH prevalence and distribution across diagnostic groups, sexes, and in terms of asymmetry. WMH burden was significantly greater in all neurodegenerative dementia groups, likely encompassing areas exclusively impacted by neurodegeneration as well as areas related to cerebrovascular disease pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Demencia Frontotemporal , Leucoaraiosis , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Sustancia Blanca , Masculino , Humanos , Femenino , Anciano , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Enfermedad de Parkinson/patología , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/patología , Estudios Transversales , Canadá , Disfunción Cognitiva/patología , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética/métodos , Envejecimiento , Demencia Frontotemporal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA