Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mediators Inflamm ; 2020: 8704146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192176

RESUMEN

Isoorientin has anti-inflammatory effects; however, the mechanism remains unclear. We previously found isoorientin is an inhibitor of glycogen synthase kinase 3ß (GSK3ß) in vitro. Overactivation of GSK3ß is associated with inflammatory responses. GSK3ß is inactivated by phosphorylation at Ser9 (i.e., p-GSK3ß). Lithium chloride (LiCl) inhibits GSK3ß and also increases p-GSK3ß (Ser9). The present study investigated the anti-inflammatory effect and mechanism of isoorientin via GSK3ß regulation in lipopolysaccharide- (LPS-) induced RAW264.7 murine macrophage-like cells and endotoxemia mice. LiCl was used as a control. While AKT phosphorylates GSK3ß, MK-2206, a selective AKT inhibitor, was used to activate GSK3ß via AKT inhibition (i.e., not phosphorylate GSK3ß at Ser9). The proinflammatory cytokines TNF-α, IL-6, and IL-1ß were detected by ELISA or quantitative real-time PCR, while COX-2 by Western blotting. The p-GSK3ß and GSK3ß downstream signal molecules, including NF-κB, ERK, Nrf2, and HO-1, as well as the tight junction proteins ZO-1 and occludin were measured by Western blotting. The results showed that isoorientin decreased the production of TNF-α, IL-6, and IL-1ß and increased the expression of p-GSK3ß in vitro and in vivo, similar to LiCl. Coadministration of isoorientin and LiCl showed antagonistic effects. Isoorientin decreased the expression of COX-2, inhibited the activation of ERK and NF-κB, and increased the activation of Nrf2/HO-1 in LPS-induced RAW264.7 cells. Isoorientin increased the expressions of occludin and ZO-1 in the brain of endotoxemia mice. In summary, isoorientin can inhibit GSK3ß by increasing p-GSK3ß and regulate the downstream signal molecules to inhibit inflammation and protect the integrity of the blood-brain barrier and the homeostasis in the brain.


Asunto(s)
Endotoxemia/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta/genética , Inflamación/tratamiento farmacológico , Luteolina/farmacología , Macrófagos/efectos de los fármacos , Animales , Endotoxemia/metabolismo , Ensayo de Inmunoadsorción Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hemo-Oxigenasa 1/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Interleucina-6/metabolismo , Cloruro de Litio/farmacología , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Factor 2 Relacionado con NF-E2/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Ocludina/biosíntesis , Fosforilación , Células RAW 264.7 , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína de la Zonula Occludens-1/metabolismo
2.
Immunopharmacol Immunotoxicol ; 41(1): 172-177, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30896303

RESUMEN

Objective: To investigate the cellular mechanism that sinomenine (SIN) inhibits inflammation in macrophages induced by LPS through α7 nicotinic acetylcholine receptor (α7nAChR). Materials and methods: RAW264.7 cells were stimulated with LPS and treated by SIN or nicotine (Nic). A selective antagonist of α7nAChR, α-bungarotoxin (BTX) was used to block α7nAChR. AG490 was used to inhibit JAK2 activation. ELISA was performed to detect the levels of TNF-α and MCP-1. Western blotting was used to analyze the expression of MIF, MMP-9, CD14, TLR4, STAT3 and p-STAT3. Intracellular-free calcium level was measured by Fluorescent probe fluo-3/AM Results: SIN inhibited the production of TNF-α, MCP-1, MIF, and MMP-9, decreased the expression of CD14 and TLR4, and inhibited the release of intracellular-free calcium from intracellular stores in RAW 264.7 cells stimulated by LPS. JAK-specific inhibitor AG490 attenuated the inhibitory effect of SIN on TNF-α. SIN increased the phosphorylation of STAT3. And the above effects of SIN were attenuated by antagonist of α7nAChR. Conclusions: SIN can decrease the expression of CD14/TLR4 and intracellular free calcium level, activate JAK2/STAT3 pathway to inhibit inflammatory response through α7nAChR in macrophages.


Asunto(s)
Antiinflamatorios/farmacología , Calcio/metabolismo , Janus Quinasa 2/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Morfinanos/farmacología , Factor de Transcripción STAT3/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Células RAW 264.7 , Transducción de Señal
3.
Exp Neurol ; : 114881, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996864

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive deficits. Although the pathogenesis of AD is unclear, oxidative stress has been implicated to play a dominant role in its development. The flavonoid isoorientin (ISO) and its synthetic derivatives TFGF-18 selectively inhibit glycogen synthase kinase-3ß (GSK-3ß), a potential target of AD treatment. PURPOSE: To investigate the neuroprotective effect of TFGF-18 against oxidative stress via the GSK-3ß pathway in hydrogen peroxide (H2O2)-induced rat pheochromocytoma PC12 cells in vitro and scopolamine (SCOP)-induced AD mice in vivo. METHOD: The oxidative stress of PC12 cells was induced by H2O2 (600 µM) and the effects of TFGF-18 (2 and 8 µM) or ISO (12.5 and 50 µM) were observed. The AD mouse model was induced by SCOP (3 mg/kg), and the effects of TFGF-18 (2 and 8 mg/kg), ISO (50 mg/kg), and donepezil (DNP) (3 mg/kg) were observed. DNP, a currently accepted drug for AD was used as a positive control. The neuronal cell damages were analyzed by flow cytometry, LDH assay, JC-1 assay and Nissl staining. The oxidative stress was evaluated by the detection of MDA, SOD, GPx and ROS. The level of ACh, and the activity of AChE, ChAT were detected by the assay kit. The expressions of Bax, Bcl-2, caspase3, cleaved-caspase3, p-AKT (Thr308), AKT, p-GSK-3ß (Ser9), GSK-3ß, Nrf2, and HO-1, as well as p-CREB (Ser133), CREB, and BDNF were analyzed by western blotting. Morris water maze test was performed to analyze learning and memory ability. RESULTS: TFGF-18 inhibited neuronal damage and the expressions of Bax caspase3 and cleaved-caspase3, and increased the expression of Bcl-2 in vitro and in vivo. The level of MDA and ROS were decreased while the activities of SOD and GPx were increased by TFGF-18. Moreover, TFGF-18 increased the p-AKT, p-GSK-3ß (Ser9), Nrf2, HO-1, p-CREB, and BDNF expression reduced by H2O2 and SCOP. Meanwhile, MK2206, an AKT inhibitor, reversed the effect of TFGF-18 on the AKT/GSK-3ß pathway. In addition, the cholinergic system (ACh, ChAT, and AChE) disorders were retrained and the learning and memory impairments were prevented by TFGF-18 in SCOP-induced AD mice. CONCLUSIONS: TFGF-18 protects against neuronal cell damage and cognitive impairment by inhibiting oxidative stress via AKT/GSK-3ß/Nrf2 pathway.

4.
Phytomedicine ; 100: 154050, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35397284

RESUMEN

BACKGROUND: Sinomenine (SIN) is an anti-inflammatory drug that has been used for decades in China to treat arthritis. In a previous study, SIN acted on α7 nicotinic acetylcholine receptor (α7nAChR) to inhibit inflammatory responses in macrophages, which indicates a new anti-inflammatory mechanism of SIN. However, the level of α7nAChR was increased in the inflammatory responses and was downregulated by SIN in vitro, so the underlying mechanisms of SIN acting on α7nAChR remain unclear. PURPOSE: To analyze the role of α7nAChR in inflammation and the effect and mechanism of SIN regulation of α7nAChR. METHODS: The effects of SIN on α7nAChR in endotoxemic mice and LPS-stimulated macrophages were observed. Nicotine (Nic) was used as a positive control, and berberine (Ber) was used as a negative control targeting α7nAChR. The antagonists of α7nAChR, α-bungarotoxin (BTX) and mecamylamine (Me), were used to block α7nAChR. In RAW264.7 macrophage cells in vitro, α7nAChR short hairpin RNA (shRNA) was used to knock down α7nAChR. Macrophage polarization was analyzed by the detection of TNF-α, IL-6, iNOS, IL-10, Arg-1, and Fizz1. U0126 was used to block ERK phosphorylation. The cytokines α7nAChR, ERK1/2, p-ERK1/2 and Egr-1 were detected. RESULTS: SIN decreased the levels of TNF-α, IL-6 and the expression of α7nAChR increased by LPS in endotoxemic mice. The above effects of SIN were attenuated by BTX. In the α7nAChR shRNA transfected RAW264.7 cells, compared with the control, α7nAChR was knocked down, and M1 phenotype markers (including TNF-α, IL-6, and iNOS) were significantly downregulated, whereas M2 phenotype markers (including IL-10, Arg-1, and Fizz1) were significantly upregulated when stimulated by LPS. SIN inhibited the expression of p-ERK1/2 and the transcription factor Egr-1 induced by LPS in RAW264.7 cells, and the above effects of SIN were attenuated by BTX. The expression of α7nAChR was suppressed by U0126, which lessened the expression of p-ERK1/2 and Egr-1. CONCLUSIONS: SIN acts on α7nAChR to inhibit inflammatory responses and downregulates high expression of α7nAChR in vivo and in vitro. The increase of α7nAChR expression is correlated with inflammatory responses and participates in macrophage M1 polarization. SIN downregulates α7nAChR via a feedback pathway of α7nAChR/ERK/Egr-1, which contributes to inhibiting macrophage M1 polarization and inflammatory responses.


Asunto(s)
Interleucina-10 , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Retroalimentación , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Ratones , Morfinanos , ARN Interferente Pequeño/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
5.
J Leukoc Biol ; 109(4): 843-852, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32726882

RESUMEN

Lung cancer is the leading cause of cancer deaths worldwide, with a high morbidity and less than 20% survival rate. Therefore, new treatment strategies and drugs are needed to reduce the mortality of patients with lung cancer. α7 nicotinic acetylcholine receptor (α7 nAChR), as a receptor of nicotine and its metabolites, is a potential target for lung cancer treatment. Our previous studies revealed that sinomenine plays anti-inflammation roles via α7 nAChR and down-regulates the expression of this receptor, thus increasing the inflammatory response. Hence, sinomenine is possibly a natural ligand of this receptor. In the present study, the effects of sinomenine on lung cancer A549 cells and tumor-bearing mice were determined to investigate whether this alkaloid has an inhibitory effect on lung cancer via α7 nAChR. CCK-8 assay, wound-healing test, and flow cytometry were performed for cell proliferation, cell migration, and apoptosis analysis in vitro, respectively. Xenograft mice were used to evaluate the effects of sinomenine in vivo. Results showed that sinomenine decreased cell proliferation and migration abilities but increased the percentage of apoptotic cells. Tumor volume in tumor-bearing mice was significantly reduced after sinomenine treatment compared with that in the vehicle group mice (p < 0.05). Furthermore, the effects of sinomenine were abolished by the α7 nAChR antagonist mecamylamine and the allosteric modulator PNU-120596, but no change occurred when the mice were pretreated with the muscarinic acetylcholine receptor antagonist atropine. Meanwhile, sinomenine suppressed α7 nAChR expression in vitro and in vivo, as well as the related signaling molecules pERK1/2 and ERK1/2 and the transcription factors TTF-1 and SP-1. By contrast, sinomenine up-regulated the expression of another transcription factor, Egr-1. These effects were restricted by mecamylamine and PNU but not by atropine. Results suggested that sinomenine can inhibit lung cancer via α7 nAChR in a negative feedback mode.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Morfinanos/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Células A549 , Animales , Antineoplásicos/farmacología , Humanos , Masculino , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo
6.
J Leukoc Biol ; 110(6): 1113-1120, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34425026

RESUMEN

Sinomenine (SIN) is a clinical drug for treating rheumatoid arthritis (RA) in China. Our previous study found SIN inhibited inflammation via alpha7 nicotinic acetylcholine receptor (α7nAChR) in macrophages in vitro. Adenosine receptor A2A has anti-inflammatory and immunosuppressive function. However, the mechanisms of SIN acting on α7nAChR and the effect on adenosine A2A receptor (A2A R) in RA are not clear. In the present study, the effects of SIN on adjuvant-induced-arthritis (AIA) rats in vivo and on fibroblast-like synoviocytes (FLSs) in vitro were investigated. Indomethacin (Indo) and methotrexate (MTX), the clinical anti-arthritis drugs, were used as controls. Nicotine (Nic), a specific agonist of α7nAChR, was used as a control for targeting α7nAChR. Alpha-bungarotoxin (α-BTX), the antagonist of α7nAChR or small interference RNA (siRNA) was used to block or knock down α7nAChR. Results showed that SIN decreased arthritis index, hind paw volume, erythrocyte sedimentation (ESR) and serum TNF-α in AIA rats, and α-BTX attenuated the earlier-mentioned effects of SIN and Nic, but not Indo and MTX. The expressions of A2A R in synovium declined in AIA rats, but remarkably increased after the intervention of SIN. The expression of A2A R decreased by LPS or TNF-α, but increased by SIN; cAMP also increased by SIN in FLSs in vitro. SIN inhibited the expression of MCP-1, IL-6, and vascular endothelial growth factor in LPS-induced FLSs. SIN inhibited the activation of NF-κB. Meanwhile, α-BTX or α7nAChR siRNA blocked the earlier-mentioned effects of SIN in FLSs. Results suggested the expressions of A2A R in synovium and FLSs are negatively correlated with the arthritis progression of AIA rats and the activation of FLSs. SIN increases A2A R and inhibits the activation of NF-κB pathway via α7nAChR in AIA rats and FLSs.


Asunto(s)
Antirreumáticos/farmacología , Artritis Reumatoide/metabolismo , Morfinanos/farmacología , FN-kappa B/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Reumatoide/patología , Masculino , Ratas , Ratas Sprague-Dawley , Sinoviocitos/metabolismo
7.
Behav Brain Res ; 398: 112968, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069740

RESUMEN

ß-Amyloid (Aß) elevation, tau hyperphosphorylation, and neuroinflammation are major hallmarks of Alzheimer's disease (AD). Glycogen synthase kinase-3ß (GSK-3ß) is a key protein kinase implicated in the pathogenesis of AD. Blockade of GSK-3ß is an attractive therapeutic strategy for AD. Isoorientin, a 6-C-glycosylflavone, was previously shown to be a highly selective inhibitor of GSK-3ß, while exerting neuroprotective effects in neuronal models of AD. In the present study, we evaluated the in vivo effects of isoorientin on GSK-3ß, tau phosphorylation, Aß deposition, neuroinflammatory response, long-term potentiation, and spatial memory in amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice using biochemical, electrophysiological, and behavioral tests. Chronic oral administration of isoorientin to APP/PS1 mice at 8 months of age attenuated multiple AD pathogenic hallmarks in the brains, including GSK-3ß overactivation, tau hyperphosphorylation, Aß deposition, and neuroinflammation. For neuroinflammation, isoorientin treatment reduced the number of activated microglia associated with Aß-positive plaques, and in parallel reduced the levels of pro-inflammatory factors in the brains of APP/PS1 mice. Strikingly, isoorientin reversed deficits in synaptic long-term potentiation and spatial memory relevant to cognitive functions. Together, the findings suggest that isoorientin is a brain neuroprotector and may be a promising drug lead for treatment of AD and related neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Luteolina/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Presenilina-1/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Memoria Espacial/efectos de los fármacos , Proteínas tau/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA