Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36850852

RESUMEN

Quantum dots have found significant applications in photoelectric detectors due to their unique electronic and optical properties, such as tunable bandgap. Recently, colloidal quantum dots (CQDs) have attracted much interest because of the ease of controlling the dot size and low production cost. In this paper, a high-performance ZnO/PbS heterojunction photodetector was fabricated by spin-coating PbS CQDs onto the surface of a hydrothermally grown vertical array of ZnO nanowires (NWs) on an indium tin oxide (ITO) substrate. Under 940 nm near-infrared light illumination, the device demonstrated a responsivity and detectivity of ~3.9 × 104 A/W and ~9.4 × 1013 Jones, respectively. The excellent performances and low cost of this nanocomposite-based photodetector show that it has the potential for widespread applications ranging from medical diagnosis to environmental monitoring.

2.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177533

RESUMEN

Lead sulfide colloidal quantum dots (PbS CQDs) are promising optoelectronic materials due to their unique properties, such as tunable band gap and strong absorption, which are of immense interest for application in photodetectors and solar cells. However, the tunable band gap of PbS CQDs would only cover visible short-wave infrared; the ability to detect longer wavelengths, such as mid- and long-wave infrared, is limited because they are restricted by the band gap of the bulk material. In this paper, a novel photodetector based on the synergistic effect of PbS CQDs and bismuth telluride (Bi2Te3) was developed for the detection of a mid-wave infrared band at room temperature. The device demonstrated good performance in the visible-near infrared band (i.e., between 660 and 850 nm) with detectivity of 1.6 × 1010 Jones at room temperature. It also exhibited photoelectric response in the mid-wave infrared band (i.e., between 4.6 and 5.1 µm). The facile fabrication process and excellent performance (with a response of up to 5.1 µm) of the hybrid Bi2Te3/PbS CQDS photodetector are highly attractive for many important applications that require high sensitivity and broadband light detection.

3.
Nanomaterials (Basel) ; 12(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36145000

RESUMEN

Colloidal quantum dots (CQDs) as photodetector materials have attracted much attention in recent years due to their tunable energy bands, low cost, and solution processability. However, their intrinsically low carrier mobility and three-dimensional (3D) confinement of charges are unsuitable for use in fast-response and highly sensitive photodetectors, hence greatly restricting their application in many fields. Currently, 3D topological insulators, such as bismuth telluride (Bi2Te3), have been employed in high-speed broadband photodetectors due to their narrow bulk bandgap, high carrier mobility, and strong light absorption. In this work, the advantages of topological insulators and CQDs were realized by developing a hybrid Bi2Te3/PbS CQDs photodetector that exhibited a maximum responsivity and detectivity of 18 A/W and 2.1 × 1011 Jones, respectively, with a rise time of 128 µs at 660 nm light illumination. The results indicate that such a photodetector has potential application in the field of fast-response and large-scale integrated optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA