RESUMEN
SignificanceIn recent years, lithium-ion batteries (LIBs) have been widely applied in electric vehicles as energy storage devices. However, it is a great challenge to deal with the large number of spent LIBs. In this work, we employ a rapid thermal radiation method to convert the spent LIBs into highly efficient bifunctional NiMnCo-activated carbon (NiMnCo-AC) catalysts for zinc-air batteries (ZABs). The obtained NiMnCo-AC catalyst shows excellent electrochemical performance in ZABs due to the unique core-shell structure, with face-centered cubic Ni in the core and spinel NiMnCoO4 in the shell. This work provides an economical and environment-friendly approach to recycling the spent LIBs and converting them into novel energy storage devices.
RESUMEN
Flexible lithium-sulfur (Li-S) batteries with high mechanical compliance and energy density are highly desired. This manuscript reported that large-area freestanding MXene (Ti3C2Tx) film has been obtained through a scalable drop-casting method, significantly improving adhesion to the sulfur layer under the continuously bent. Titanium oxide anchored on holey Ti3C2Tx (TiO2/H-Ti3C2Tx) was also produced by the well-controlled oxidation of few-layer Ti3C2Tx, which greatly facilitates lithium ion transport as well as prevents the shuttling of lithium polysulfides. Therefore, the obtained sandwich electrode has demonstrated a high capacity of 740 mAh g-1 at 2 C and a high capacity retention of 81% at 1 C after 500 cycles. Flexible Li-S batteries based on this sandwich electrode have a capacity retention as high as 95% after bending 500 times. This work provides effective design strategies of MXene for flexible batteries and wearable electronics.
RESUMEN
Lithium-ion batteries (LIBs) are still facing safety problems, mainly due to dendrite growth on the anode that leads to combustion and explosion. Forming a stable solid electrolyte interface (SEI) layer is an effective way to suppress this. To induce the formation of stable SEI using simple methods at a low cost, we report an ultrathin and large-scale hexagonal boron nitride (h-BN)/polyimide (PI) layer that was coated on a commercial polypropylene (PP) separator. The formation of a stabilized SEI component induced by the h-BN coating layer is proposed, as suggested by theoretical calculations and confirmed by electrochemical analysis and spectroscopy. It effectively suppresses Li dendrite growth and reduces the consumption of active lithium. The separator also has good electrolyte wettability, excellent mechanical strength and thermal conductivity, and high thermal stability. When using the h-BN modified separator in a full cell, the capacity is extremely stable after long cycling and high temperature.
RESUMEN
Fast-charging batteries have attracted great attention, and are anticipated to charge electrical vehicles and consumer electronics to full-capacity in several minutes. However, commercial electrode materials in batteries generally have a limited rate performance and are difficult to be used in fast-charging batteries. Designing electrodes with an aligned structure is an effective way to shorten the ion transport path and improve the rate performance of a battery. The excellent electronic conductivity of carbon-based electrodes is another key factor for increasing the rate capability of rechargeable batteries. Therefore, aligned carbon-based electrodes (ACBEs) can significantly improve the power density by combining the advantages of an aligned structure and carbon-based materials. In this review, the mechanism, advantages, and challenges of ACBEs for fast-charging batteries are evaluated, and then the design and preparation methods of ACBEs based on their different dimensions are summarized, and their applications in different batteries are illustrated. Finally, the future development of ACBEs for fast-charging batteries is considered.
RESUMEN
A reduced graphene oxide encapsulating Fe6Ni20Co2Mn2Cu1.5@rGO catalyst is prepared using a Joule heating strategy. The graphene-coated layer with high crystallinity enhances the stability of the crystal structure, resulting in superior OER activity. Rechargeable zinc-air batteries with Fe6Ni20Co2Mn2Cu1.5@rGO demonstrate remarkable performance, boasting a high specific capacity of 800 mA h gZn-1, an impressive peak power density of 154.612 mW cm-2, and a cycle life of 300 hours at a current density of 10 mA cm-2.
RESUMEN
The advancement of rechargeable zinc-air batteries (RZABs) faces challenges from the pronounced polarization and sluggish kinetics of oxygen reduction and evolution reactions (ORR and OER). Single-atom catalysts offer an effective solution, yet their insufficient or singular catalytic activity hinders their development. In this work, a dual single-atom catalyst, FeCo-SAs, was fabricated, featuring atomically dispersed N3-Fe-Co-N4 sites on N-doped graphene nanosheets for bifunctional activity. Introducing Co into Fe single-atoms and secondary pyrolysis altered Fe coordination with N, creating an asymmetric environment that promoted charge transfer and increased the density of states near the Fermi level. This catalyst achieved a narrow potential gap of 0.616 V, with a half-wave potential of 0.884 V for ORR (vs the reversible hydrogen electrode) and a low OER overpotential of 270 mV at 10 mA cm-2. Owing to the superior activity of FeCo-SAs, RZABs exhibited a peak power density of 203.36 mW cm-2 and an extended cycle life of over 550 h, exceeding the commercial Pt/C + IrO2 catalyst. Furthermore, flexible RZABs with FeCo-SAs demonstrated the promising future of bimetallic pairs in wearable energy storage devices.
RESUMEN
Aqueous zinc-based batteries (ZBs) have been widely investigated owing to their intrinsic safety, low cost, and simple assembly. However, the actual behavior of Zn deposition under large current density is still a severe issue associated with obscure mechanism interpretation of ZBs under high loading. Here, differing from the conventional understanding that short circuit is induced by dendrite penetrating under large current density (10-100 mA cm-2), the separator permeation effect is unraveled to illustrate the paradox between smooth deposition and short lifespan. Generally, a dense plating morphology is achieved under large current density because of intensive nuclei and boosted plane growth. Nevertheless, in the scenes applying separators, the multiplied local current density derived from narrow separator channels leads to rapid Zn2+ exhaustion, converting the Zn deposition mode from nucleation control to concentration control, which eventually results in separator permeation and short circuit. This effect is validated in other aqueous metal anodes (Cu, Sn, Fe) and receives similar results. Based on the understanding, a micro-pore (150 µm) sponge foam is proposed as separators for large-current anodes to provide broader Zn2+ path and mitigate the separator permeation effect. This work provides unique perspectives on coordinating fast-charging ability and anode stability of ZBs.
RESUMEN
Aqueous zinc batteries possess intrinsic safety and cost-effectiveness, but dendrite growth and side reactions of zinc anodes hinder their practical application. Here, we propose the extended substrate screening strategy for stabilizing zinc anodes and verify its availability (dsubstrate: dZn(002) = 1: 1âdsubstrate: dZn(002)=n:1, n = 1, 2). From a series of calculated phyllosilicates satisfying dsubstrate ≈ 2dZn(002), we select vermiculite, which has the lowest lattice mismatch (0.38%) reported so far, as the model to confirm the effectiveness of "2dZn(002)" substrates for zinc anodes protection. Then, we develop a monolayer porous vermiculite through a large-scale and green preparation as a functional coating for zinc electrodes. Unique "planting Zn(002) seeds" mechanism for "2dZn(002)" substrates is revealed to induce the oriented growth of zinc deposits. Additionally, the coating effectively inhibits side reactions and promotes zinc ion transport. Consequently, the modified symmetric cells operate stably for over 300 h at a high current density of 50 mA cm-2. This work extends the substrate screening strategy and advances the understanding of zinc nucleation mechanism, paving the way for realizing high-rate and stable zinc-metal batteries.
RESUMEN
The advent of 5G and the Internet of Things has spawned a demand for wearable electronic devices. However, the lack of a suitable flexible energy storage system has become the "Achilles' Heel" of wearable electronic devices. Additional problems during the transformation of the battery structure from conventional to flexible also present a severe challenge to the battery design. Flexible Zn-based batteries, including Zn-ion batteries and Zn-air batteries, have long been considered promising candidates due to their high safety, eco-efficiency, substantial reserve, and low cost. In the past decade, researchers have come up with elaborate designs for each portion of flexible Zn-based batteries to improve the ionic conductivities, mechanical properties, environment adaptabilities, and scalable productions. It would be helpful to summarize the reported strategies and compare their pros and cons to facilitate further research toward the commercialization of flexible Zn-based batteries. In this review, the current progress in developing flexible Zn-based batteries is comprehensively reviewed, including their electrolytes, cathodes, and anodes, and discussed in terms of their synthesis, characterization, and performance validation. By clarifying the challenges in flexible Zn-based battery design, we summarize the methodology from previous investigations and propose challenges for future development. In the end, a research paradigm of Zn-based batteries is summarized to fit the burgeoning requirement of wearable electronic devices in an iterative process, which will benefit the future development of Zn-based batteries.
RESUMEN
A conventional two-electrode rechargeable zinc-air battery (RZAB) has two major problems: 1) opposing requirements for the oxygen reduction (ORR) and oxygen evolution (OER) reactions from the catalyst at the air cathode; and 2) zinc-dendrite formation, hydrogen generation, and zinc corrosion at the zinc anode. To tackle these problems, a three-electrode RZAB (T-RZAB) including a hydrophobic discharge cathode, a hydrophilic charge cathode, and a zinc-free anode is developed. The decoupled cathodes enable fast ORR and OER kinetics, and avoid oxidization of the ORR catalyst. The zinc-free anode using tin-coated copper foam that induces the growth of (002)Zn planes, suppresses hydrogen evolution, and prevents Zn corrosion. As a result, the T-RZABs have a high discharge capacity per cycle of 800 mAh cm-2 , a low voltage gap between the discharge/charge platforms of 0.66 V, and an ultralong cycle life of 5220 h at a current density of 10 mA cm-2 . A large T-RZAB with a discharge capacity of 10 Ah per cycle with no obvious degradation after cycling for 1000 h is developed. Finally, a T-RZAB pack that has an energy density of 151.8 Wh kg-1 and a low cost of 46.7 US dollars kWh-1 is assembled.
RESUMEN
Flexible Zn-air batteries (FZABs) have significant potentials as efficient energy storage devices for wearable electronics because of their safeties and high energy-to-cost ratios. However, their application is limited by their short cycle lives, low discharge capacities per cycle, and high charge/discharge polarizations. Accordingly, herein, a poly(sodium acrylate)-polyvinyl alcohol (PANa-PVA)-ionic liquid (IL) hydrogel (PANa-PVA-IL) is prepared using a hygroscopic IL, 1-ethyl-3-methylimidazolium chloride, as an additive for twin-chain PANa-PVA. PANa-PVA-IL exhibits a high conductivity of 306.9 mS cm-1 and a water uptake of 2515 wt% at room temperature. Moreover, a low-cost bifunctional catalyst, namely, Co9 S8 nanoparticles anchored on N- and S-co-doped activated carbon black pearls 2000 (Co9 S8 -NSABP), is synthesized, which demonstrates a low O2 reversibility potential gap of 0.629 V. FZABs based on PANa-PVA-IL and Co9 S8 -NSABP demonstrate high discharge capacities of 1.67 mAh cm-2 per cycle and long cycle lives of 330 h. Large-scale flexible rechargeable Zn-air pouch cells exhibit total capacities of 1.03 Ah and energy densities of 246 Wh kgcell -1 . This study provides new information about hydrogels with high ionic conductivities and water uptakes and should facilitate the application of FZABs in wearable electronics.
RESUMEN
Lithium cobalt oxide (LCO) is widely used in Li-ion batteries due to its high volumetric energy density, which is generally charged to 4.3 V. Lifting the cut-off voltage of LCO from 4.3 V to 4.7 V will increase the specific capacity from 150 to 230 mAh g-1 with a significant improvement of 53%. However, LCO suffers serious problems of H1-3/O1 phase transformation, unstable interface between cathode and electrolyte, and irreversible oxygen redox reaction at 4.7 V. Herein, interface stabilization and band structure modification are proposed to strengthen the crystal structure of LCO for stable cycling of LCO at an ultrahigh voltage of 4.7 V. Gradient distribution of magnesium and uniform doping of nickel in Li layers inhibit the harmful phase transitions of LCO, while uniform LiMgx Ni1- x PO4 coating stabilizes the LCO-electrolyte interface during cycles. Moreover, the modified band structure improves the oxygen redox reaction reversibility and electrochemical performance of the modified LCO. As a result, the modified LCO has a high capacity retention of 78% after 200 cycles at 4.7 V in the half cell and 63% after 500 cycles at 4.6 V in the full cell. This work makes the capacity of LCO one step closer to its theoretical specific capacity.
RESUMEN
Next-generation batteries based on conversion reactions, including aqueous metal-air batteries, nonaqueous alkali metal-O2 and -CO2 batteries, alkali metal-chalcogen batteries, and alkali metal-ion batteries have attracted great interest. However, their use is restricted by inefficient reversible conversion of active agents. Developing bifunctional catalysts to accelerate the conversion reaction kinetics in both discharge and charge processes is urgently needed. Graphene-, or graphene-like carbon-supported atomically dispersed metal catalysts (G-ADMCs) have been demonstrated to show excellent activity in various electrocatalytic reactions, making them promising candidates. Different from G-ADMCs for catalysis, which only require high activity in one direction, G-ADMCs for rechargeable batteries should provide high activity in both discharging and charging. This review provides guidance for the design and fabrication of bifunctional G-ADMCs for next-generation rechargeable batteries based on conversion reactions. The key challenges that prevent their reversible conversion, the origin of the activity of bifunctional G-ADMCs, and the current design principles of bifunctional G-ADMCs for highly reversible conversion, have been analyzed and highlighted for each conversion-type battery. Finally, a summary and outlook on the development of bifunctional G-ADMC materials for next-generation batteries with a high energy density and excellent energy efficiency are given.
RESUMEN
Magnesium batteries present high volumetric energy density and dendrite-free deposition of Mg, drawing wide attention in energy-storage devices. However, their further development remains stagnated due to relevant interfacial issues between the Mg anode and the electrolyte and sluggish solid-state diffusion kinetics of Mg2+ ions. Herein, an in situ conversion chemistry to construct a nanostructured Bi anode from bismuth selenide driven by Li+ is proposed. Through the combination of operando synchrotron X-ray diffraction, ex situ synchrotron X-ray absorption spectroscopy, and comprehensive electrochemical tests, it is demonstrated that the nanosize of the in-situ-formed Bi crystals contributes to the fast Mg2+ diffusion kinetics and highly efficient Mg-Bi alloingy/de-alloying. The resultant Bi anodes exhibit superior long-term cycling stability with over 600 cycles under a high current density of 1.0 A g-1 . This work provides a new approach to construct alloy anode and paves the way for exploring novel electrode materials for magnesium batteries.
RESUMEN
The lack of low-cost catalysts with high activity leads to the unsatisfactory electrochemical performance of Li-CO2 batteries. Single-atom catalysts (SACs) with metal-Nx moieties have great potential to improve battery reaction kinetics and cycling ability. However, how to rationally select and develop highly efficient electrocatalysts remains unclear. Herein, we used density functional theory (DFT) calculations to screen SACs on N-doped graphene (SAMe@NG, Me = Cr, Mn, Fe, Co, Ni, Cu) for CO2 reduction and evolution reaction. Among them, SACr@NG shows the promising potential as an effective electrocatalyst for the reversible Li-CO2 batteries. To verify the validity of the DFT calculations, a two-step method has been developed to fabricate SAMe@NG on a porous carbon foam (SAMe@NG/PCF) with similar loading of â¼8 wt %. Consistent with the theoretical calculations, batteries with the SACr@NG/PCF cathodes exhibit a superior rate performance and cycling ability, with a long cycle life and a narrow voltage gap of 1.39 V over 350 cycles at a rate of 100 µA cm-2. This work not only demonstrates a principle for catalysts selection for the reversible Li-CO2 batteries but also a controllable synthesis method for single atom catalysts.
RESUMEN
As one of the CO2 capture and utilization technologies, Li-CO2 batteries have attracted special interest in the application of carbon neutral. However, the design and fabrication of a low-cost high-efficiency cathode catalyst for reversible Li2CO3 formation and decomposition remains challenging. Here, guided by theoretical calculations, CO2 was utilized to activate the catalytic activity of conventional nitrogen-doped graphene, in which pyridinic-N and pyrrolic-N have a high total content (72.65%) and have a high catalytic activity in both CO2 reduction and evolution reactions, thus activating the reversible conversion of Li2CO3 formation and decomposition. As a result, the designed cathode has a low voltage gap of 2.13 V at 1200 mA g-1 and long-life cycling stability with a small increase in the voltage gap of 0.12 V after 170 cycles at 500 mA g-1. Our work suggests a way to design metal-free catalysts with high activity that can be used to activate the performance of Li-CO2 batteries.
RESUMEN
Single-atom metal catalysts (SACs) are used as sulfur cathode additives to promote battery performance, although the material selection and mechanism that govern the catalytic activity remain unclear. It is shown that d-p orbital hybridization between the single-atom metal and the sulfur species can be used as a descriptor for understanding the catalytic activity of SACs in Li-S batteries. Transition metals with a lower atomic number are found, like Ti, to have fewer filled anti-bonding states, which effectively bind lithium polysulfides (LiPSs) and catalyze their electrochemical reaction. A series of single-atom metal catalysts (Me = Mn, Cu, Cr, Ti) embedded in three-dimensional (3D) electrodes are prepared by a controllable nitrogen coordination approach. Among them, the single-atom Ti-embedded electrode has the lowest electrochemical barrier to LiPSs reduction/Li2 S oxidation and the highest catalytic activity, matching well with the theoretical calculations. By virtue of the highly active catalytic center of single-atom Ti on the conductive transport network, high sulfur utilization is achieved with a low catalyst loading (1 wt.%) and a high area-sulfur loading (8 mg cm-2 ). With good mechanical stability for bending, these 3D electrodes are suitable for fabricating bendable/foldable Li-S batteries for wearable electronics.
RESUMEN
Hard carbon exhibits high theoretical capacity for sodium-ion batteries. However, its practical application suffers from low electric conductivity, poor electrochemical stability, and sluggish kinetics. To tackle these challenges, novel nitrogen-doped carbon spheres with mesopores, ultrathin nanostructure, and optimal graphitization are prepared by a three-step procedure. We find that the as-prepared sample (NMCSs-800) with an optimal structure and nitrogen content delivers a high reversible sodium storage capacity of 334.7 mA h/g at 50 mA/g and an ultrahigh rate performance of 93.9 mA h/g at 5 A/g, which is better than most state-of-the-art carbon materials. The improved energy storage capacity is attributed to its unique architecture and optimal nitrogen doping, which provide abundant active sites, defects, and voids. Moreover, kinetic analysis and in situ Raman spectroscopy results reveal adsorption and adsorption-intercalation mechanisms for Na+ storage in hard carbon at the slope region above 0.3 V and the other slope region of 0.3-0.02 V, respectively. We believe that our findings provide a novel tactic to design elaborate nanomaterials for the high-performance sodium-ion battery.
RESUMEN
The development of earth-abundant, economical, and efficient photocatalysts to boost water splitting is a key challenge for the practical large-scale application of hydrogen energy. In this study, g-C3 N4 loaded with different tungsten compounds (W2 C, WS2 , and W2 N) is found to exhibit enhanced photocatalytic activities. W2 C/g-C3 N4 displays the highest activity for the photocatalytic reaction with a H2 evolution rate of up to 98â µmol h-1 , as well as remarkable recycling stability. The excellent photocatalytic activity of W2 C/g-C4 N3 is attributed to the suitable band alignment in W2 C/g-C4 N3 and high HER activity of the W2 C cocatalyst, which promotes the separation and transfer of carriers and hydrogen evolution at the surface. These findings demonstrate that the tungsten carbide cocatalyst is more active for the photocatalytic reaction than the sulfide or nitride, paving a way for the design of novel and efficient carbides as cocatalysts for photocatalysis.
RESUMEN
Exploring earth-abundant and cost-effective catalysts with high activity and stability for a hydrogen evolution reaction (HER) is of great importance to practical applications of alkaline water electrolysis. Here, we report on A-site Ba2+-deficiency doping as an effective strategy to enhance the electrochemical activity of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ for HER, which is related to the formation of oxygen vacancies around active Co/Fe ions. By comparison with the benchmarking Ba0.5Sr0.5Co0.8Fe0.2O3-δ , one of the most spotlighted perovskite oxides, the Ba0.95Co0.4Fe0.4Zr0.1Y0.1O3-δ oxide has lower overpotential and smaller Tafel slope. Furthermore, the Ba0.95Co0.4Fe0.4Zr0.1Y0.1O3-δ catalyst is ultrastable in an alkaline solution. The enhanced HER performance originated from the increased active atoms adjacent to oxygen vacancies on the surface of the Ba0.95Co0.4Fe0.4Zr0.1Y0.1O3-δ catalyst induced by Ba2+-deficiency doping. The low-coordinated active atoms and adjacent oxygen ions may play the role of heterojunctions that synergistically facilitate the Volmer process and thus render stimulated HER catalytic activity. The preliminary results suggest that Ba2+-deficiency doping is a feasible method to tailor the physical and electrochemical properties of perovskite, and that Ba0.95Co0.4Fe0.4Zr0.1Y0.1O3-δ is a potential catalyst for HER.