Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 35(7): 2464-2483, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37062961

RESUMEN

Switch defective/sucrose nonfermentable (SWI/SNF) complexes are evolutionarily conserved multisubunit machines that play vital roles in chromatin architecture regulation for modulating gene expression via sliding or ejection of nucleosomes in eukaryotes. In plants, perturbations of SWI/SNF subunits often result in severe developmental disorders. However, the subunit composition, pathways of assembly, and genomic targeting of the plant SWI/SNF complexes are poorly understood. Here, we report the organization, genomic targeting, and assembly of 3 distinct SWI/SNF complexes in Arabidopsis thaliana: BRAHMA-Associated SWI/SNF complexes (BAS), SPLAYED-Associated SWI/SNF complexes (SAS), and MINUSCULE-Associated SWI/SNF complexes (MAS). We show that BAS complexes are equivalent to human ncBAF, whereas SAS and MAS complexes evolve in multiple subunits unique to plants, suggesting plant-specific functional evolution of SWI/SNF complexes. We further show overlapping and specific genomic targeting of the 3 plant SWI/SNF complexes on chromatin and reveal that SAS complexes are necessary for the correct genomic localization of the BAS complexes. Finally, we define the role of the core module subunit in the assembly of plant SWI/SNF complexes and highlight that ATPase module subunit is required for global complex stability and the interaction of core module subunits in Arabidopsis SAS and BAS complexes. Together, our work highlights the divergence of SWI/SNF chromatin remodelers during eukaryote evolution and provides a comprehensive landscape for understanding plant SWI/SNF complex organization, assembly, genomic targeting, and function.


Asunto(s)
Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genómica
2.
Materials (Basel) ; 17(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612071

RESUMEN

To promote the resource utilization of steel slag and improve the production process of steel slag in steelmaking plants, this research studied the characteristics of three different processed steel slags from four steelmaking plants. The physical and mechanical characteristics and volume stability of steel slags were analyzed through density, water absorption, and expansion tests. The main mineral phases, morphological characteristics, and thermal stability of the original steel slag and the steel slag after the expansion test are analyzed with X-ray diffractometer (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TG) tests. The results show that the composition of steel slag produced by different processes is similar. The main active substances of other processed steel slags are dicalcium silicate (C2S), tricalcium silicate (C3S), CaO, and MgO. After the expansion test, the main chemical products of steel slag are CaCO3, MgCO3, and calcium silicate hydrate (C-S-H). Noticeable mineral crystals appeared on the surface of the steel slag after the expansion test, presenting tetrahedral or cigar-like protrusions. The drum slag had the highest density and water stability. The drum slag had the lowest porosity and the densest microstructure surface, compared with steel slags that other methods produce. The thermal stability of steel slag treated by the hot splashing method was relatively higher than that of steel slag treated by the other two methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA