Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Nature ; 626(8000): 772-778, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383625

RESUMEN

High-capacity storage technologies are needed to meet our ever-growing data demands1,2. However, data centres based on major storage technologies such as semiconductor flash devices and hard disk drives have high energy burdens, high operation costs and short lifespans2,3. Optical data storage (ODS) presents a promising solution for cost-effective long-term archival data storage. Nonetheless, ODS has been limited by its low capacity and the challenge of increasing its areal density4,5. Here, to address these issues, we increase the capacity of ODS to the petabit level by extending the planar recording architecture to three dimensions with hundreds of layers, meanwhile breaking the optical diffraction limit barrier of the recorded spots. We develop an optical recording medium based on a photoresist film doped with aggregation-induced emission dye, which can be optically stimulated by femtosecond laser beams. This film is highly transparent and uniform, and the aggregation-induced emission phenomenon provides the storage mechanism. It can also be inhibited by another deactivating beam, resulting in a recording spot with a super-resolution scale. This technology makes it possible to achieve exabit-level storage by stacking nanoscale disks into arrays, which is essential in big data centres with limited space.

2.
Chemistry ; 30(28): e202400685, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38469986

RESUMEN

Recently, chiral metal-organic coordination materials have emerged as promising candidates for a wide range of applications in chiroptoelectronics, chiral catalysis, and information encryption, etc. Notably, the chiroptical effect of coordination chromophores makes them appealing for applications such as photodetectors, OLEDs, 3D displays, and bioimaging. The direct synthesis of chiral coordination materials using chiral organic ligands or complexes with metal-centered chirality is very often tedious and costly. In the case of ionic coordination materials, the combination of chiral anions with cationic, achiral coordination compounds through noncovalent interactions may endow molecular materials with desirable chiroptical properties. The use of such a simple chiral strategy has been proven effective in inducing promising circular dichroism and/or circularly polarized luminescence signals. This concept article mainly delves into the latest advances in exploring the efficacy of such a chiral anion strategy for transforming achiral coordination materials into chromophores with superb photo- or electro-chiroptical properties. In particular, ionic small-molecular metal complexes, metal clusters, coordination supramolecular assemblies, and metal-organic frameworks containing chiral anions are discussed. A perspective on the future opportunities on the preparation of chiroptical materials with the chiral anion strategy is also presented.

3.
Langmuir ; 40(12): 6244-6252, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38482812

RESUMEN

A dye-sensitized photoanode is prepared by coassembling a Ru complex photosensitizer and a Ru water oxidation catalyst (WOC) on a TiO2 substrate, in which the WOC molecules are immobilized in a layer-by-layer fashion through metal-pyridine coordination with the aid of a bifunctional anchoring and bridging molecule containing multiple pyridine groups. Under visible-light irradiation, an anodic photocurrent of around 200 µA/cm2 has been achieved with O2 and H2 being generated at the photoanode and Pt counter electrode, respectively. The pyridine anchoring strategy provides a simple method to prepare photoelectrodes for applications in photoelectrochemical cells.

4.
Angew Chem Int Ed Engl ; 63(25): e202402882, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38594208

RESUMEN

Circularly polarized luminescence (CPL)-active molecular materials have drawn increasing attention due to their promising applications for next-generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C-type Pt(II) complexes (L/D)-1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL-inactive, the spin-coated thin films of (L/D)-1 exhibit giantly-amplified circularly polarized phosphorescences with |glum| of 0.53 at 560 nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37-0.43 at 480 nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)-2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)-1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)-1 in CPL-contrast imaging and inducing CP light generation from achiral emitters and common light-emitting diode lamps have been successfully realized.

5.
Angew Chem Int Ed Engl ; : e202405520, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896428

RESUMEN

Functionalization of Si-bound methyl group provides an efficient access to diverse organosilanes. However, the asymmetric construction of silicon-stereogenic architectures by functionalization of Si-bound methyl group has not yet been described despite recent significant progress in producing chiral silicon. Herein, we disclosed the enantioselective silylmethyl functionalization involving the aryl to alkyl 1,5-palladium migration to access diverse naphthalenes possessing an enantioenriched stereogenic silicon center, which are inaccessible before. It is worthy to note that the realization of asymmetric induction at the step of metal migration itself remains challenging. Our study constitutes the first enantioselective aryl to alkyl 1,5-palladium migration reaction. The key to the success is the discovery and fine-tuning of the different substituents of α,α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-based phosphoramidites, which ensure the enantioselectivity and desired reactivity.

6.
Chemistry ; 29(72): e202302663, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37782056

RESUMEN

The development of efficient photocathodes is of critical importance for the constructions of promising tandem photo-electrochemical cells. Most known dye-sensitized photocathodes are prepared with the conventional carboxylic or phosphonic acid anchors and require the presence of other terminal linking groups to connect catalysts; they suffer from high synthetic difficulty and low adsorption stability in aqueous media. Here, a compact bilayer photocathode has been prepared by using a pyrene-based photosensitizer with multiple terminal pyridine moieties as both the anchoring and linking groups to connect a Co hydrogen-evolution catalyst to the NiO substrate. The catalyst and dye molecule are assembled in a layer-by-layer manner on NiO through the metal-pyridine coordination. This photocathode exhibits good dye adsorption stability in aqueous media. A stable cathodic photocurrent of 70 µA cm-2 was achieved, with H2 being generated at the photocathode under the visible-light irradiation. The Faraday efficiency of H2 evolution was estimated to be 9.1 %. Transient absorption spectral studies suggest that the interfacial hole transfer occurs within a few picoseconds. The integration of the organic photosensitizer with pyridine anchoring and linking groups is expected to provide a simple method for the fabrication of stable and efficient photocathodes.

7.
Angew Chem Int Ed Engl ; 62(20): e202302160, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36929027

RESUMEN

The development of circularly polarized electroluminescence (CPEL) is currently hampered by the high difficulty and cost in the syntheses of suitable chiral materials and the notorious chirality diminishment issue in electrical devices. Herein, diastereomeric IrIII and RuII complexes with chiral (±)-camphorsulfonate counteranions are readily synthesized and used as the active materials in circularly polarized light-emitting electrochemical cells to generate promising CPELs. The addition of the chiral ionic liquid (±)-1-butyl-3-methylimidazole camphorsulfonate into the active layer significantly improves the device performance and the electroluminescence dissymmetry factors (≈10-3 ), in stark contrast to the very weak circularly polarized photoluminescence of the spin-coated films of these diastereomeric complexes. Control experiments with enantiopure IrIII complexes suggest that the chiral anions play a dominant role in the electrically-induced amplification of CPELs.

8.
Angew Chem Int Ed Engl ; 61(11): e202116603, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35020259

RESUMEN

Conventional square-planar platinum complexes typically form one-dimensional assemblies as a result of unidirectional metallophilic and/or π⋅⋅⋅π intermolecular interactions. Organoplatinum(II) complexes with a cruciform shape are presented herein to construct two-dimensional (2D) microcrystals with full-color and white phosphorescence. These 2D crystals show unique monocomponent π⋅⋅⋅π stacking, from either the cyclometalating or noncyclometalating ligand, and the bicomponent alternate π⋅⋅⋅π stacking from both ligands along different facet directions. Anisotropic tri-directional waveguiding is further implemented on a single hexagonal microcrystal. These results demonstrate the great capability of the organoplatinum(II) cruciform as a general platform to fabricate 2D phosphorescent micro-/nanocrystals for advanced photonic applications.

9.
Angew Chem Int Ed Engl ; 61(33): e202205033, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35604407

RESUMEN

Nano- and micromaterials with anisotropic photoluminescence and photon transport have widespread application prospects in quantum optics, optoelectronics, and displays. But the nature of the polarization information of the out-coupled light, with respect to that of the source luminescence, has never been explored in active optical-waveguiding organic crystals. Herein, three different modes (selective, anisotropic, and consistent) of polarized-photon out-coupling are proposed and successfully implemented in a set of 2D organic microcrystals with highly linearly-polarized luminescence. It is found that the polarization direction and degree of the luminescence out-coupled through different waveguiding channels can either be essentially retained or distinctly changed with respect to those of the original luminescence, depending on the molecular arrangement and the orientation of transition dipole moments of the crystal. This work demonstrates the promising potential of 2D emissive microcrystals in multi-channel polarized photon transport.

10.
Inorg Chem ; 60(9): 6607-6615, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33861581

RESUMEN

A cationic carbazole-bridged biscyclometalated diplatinum complex 4 has been synthesized and characterized. Single-crystal X-ray analysis demonstrates that complex 4 displays a dimeric structure with noncovalent π-π stacking and unique double Pt-Pt interactions. In aerated dilute CH3CN, complex 4 is characterized by a very weak monomeric yellow emission (λemi = 547 nm; Φ = 0.51%), which is attributed to the triplet intraligand (3LC) excited state mixing with some charge transfer characters. In contrast, under aerated conditions, the dispersion of 4 in a mixed solvent of CH3CN/Et2O (1/9, v/v) or CH3CN/H2O (1/9, v/v) displays intense yellow (λemi = 550 nm; Φ = 35.5%; τ = 11.10 µs) and red emission (λemi = 635 nm; Φ = 14.1%; τ = 7.00 µs), respectively. These aggregation-induced phosphorescent emission enhancements are considered being caused by the oxygen-shielding effect and the molecular rigidification-induced decrease of nonradiative decays in the aggregate state. The morphology and size of the aggregates under these two conditions are examined by scanning electron microscope and dynamic light scattering analysis. The absorption and emission properties of 4 are further rationalized by time-dependent density functional theory calculations on a model compound.

11.
Inorg Chem ; 60(19): 14810-14819, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34546744

RESUMEN

Three tris-heteroleptic mononuclear Ru(II) complexes with dual fluorescence and phosphorescence-[Ru(dpma)(bpy)(phen)]2+ (12+), [Ru(dpma)(bpy)(dppz)]2+ (22+), and [Ru(dpma)(phen)(dppz)]2+ (32+)-have been designed and used as ratiometric light-response probes for DNA, where dpma is di(pyrid-2-yl)(methyl)-amine, bpy is 2,2'-bipyridine, phen is 1,10-phenanthroline, and dppz is dipyridophenazine, respectively. Single crystals of complex 2(PF6)2 have been obtained and studied by X-ray analysis. The interactions of these complexes with different DNAs are investigated by means of spectroscopic methods, viscosity measurements, and molecular modeling. In the presence of calf thymus DNA, complexes 2(PF6)2 and 3(PF6)2 show the emergence of a new lower-energy phosphorescence emission band; meanwhile, the higher-energy fluorescence emission band is essentially unchanged, functioning as an intrinsic internal reference. These two complexes exhibit stronger preference for calf thymus DNA over single-strand DNA (d(A)16 and d(C)16). In contrast, no binding interaction between 1(PF6)2 and calf thymus DNA is observed. The intrinsic binding constants (Kb) of 2(PF6)2 and 3(PF6)2 with calf thymus DNA are determined to be (1.4 ± 0.4) × 105 and (9.5 ± 0.15) × 104 M-1, respectively. In addition, these spectroscopic results are compared with those of the prototype complex [Ru(bpy)2(dppz)]2+ (42+), and density functional theory and time-dependent density functional theory calculations are employed to elucidate these experimental findings.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Rutenio/química , Animales , Bovinos , Estructura Molecular
12.
Angew Chem Int Ed Engl ; 60(26): 14595-14600, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33822449

RESUMEN

A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor glum , high fluorescence quantum efficiency (ΦFL ), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((±)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with glum in the order of 10-2 and ΦFL up to 80 %. Moreover, organic microcrystals with high-performance white CPL (ΦFL =46 %; |glum |=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters.

13.
Angew Chem Int Ed Engl ; 60(22): 12498-12503, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33756014

RESUMEN

A Kagome structure covalent organic framework (COF) film with three-state NIR electrochromic properties was designed and synthesized. The COFTPDA-PDA film is composed of hexagonal nanosheets with high crystallinity and has three reversible color states at different applied potentials. It has high absorption spectra changes in the NIR region, ascribed to the strong intervalence charge transfer (IVCT) interaction of the Class III mixed-valence systems of the conjugated triphenylamine species. The film showed sub-second response time (1.3 s for coloring and 0.7 s for bleaching at 1050 nm) and long retention time in the NIR region. COFTPDA-PDA film shows superior NIR electrochromic properties in term of response time and stability, attributed to the highly ordered porous structure and the π-π stacking structure of the COFTPDA-PDA architecture. The COFTPDA-PDA film was applied in mimicking a flip-flop logic gate with optical memory function.

14.
Angew Chem Int Ed Engl ; 60(30): 16388-16393, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34018292

RESUMEN

Inorganic cesium lead halide perovskites offer a pathway towards thermally stable photovoltaics. However, moisture-induced phase degradation restricts the application of hole transport layers (HTLs) with hygroscopic dopants. Dopant-free HTLs fail to realize efficient photovoltaics due to severe electrical loss. Herein, we developed an electrical loss management strategy by manipulating poly(3-hexylthiophene) with a small molecule, i.e., SMe-TATPyr. The developed P3HT/SMe-TATPyr HTL shows a three-time increase of carrier mobility owing to breaking the long-range ordering of "edge-on" P3HT and inducing the formation of "face-on" clusters, over 50 % decrease of the perovskite surface defect density, and a reduced voltage loss at the perovskite/HTL interface because of favorable energy level alignment. The CsPbI2 Br perovskite solar cell demonstrates a record-high efficiency of 16.93 % for dopant-free HTL, and superior moisture and thermal stability by maintaining 96 % efficiency at low-humidity condition (10-25 % R. H.) for 1500 hours and over 95 % efficiency after annealing at 85 °C for 1000 hours.

15.
J Am Chem Soc ; 142(5): 2601-2608, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31939661

RESUMEN

Singlet oxygen (1O2), as an important active reagent, has found wide applications in photodynamic therapy (PDT), synthetic chemistry, and materials science. Organic conjugated aromatics serving as hosts to capture and release singlet oxygen have been systematically investigated over the last decades. Herein, we present a [6 + 6] organoplatinum(II) metallacycle by using ∼180° dipyridylanthracene donor and ∼120° Pt(II) acceptor as the building blocks, which enables the capture and release of singlet oxygen with relatively high photooxygenation and thermolysis rate constants. The photooxygenation of the metallacycle to the corresponding endoperoxide was performed by sensitized irradiation, and the resulting endoperoxide is stable at room temperature and can be stored under ambient condition over months. Upon simple heating of the neat endoperoxide under inert atmosphere at 120 °C for 4 h, the resulting endoperoxide can be reconverted to the corresponding parent form and singlet oxygen. The photooxygenation and thermolysis products were characterized by NMR spectroscopy and electrospray ionization time-of-flight mass spectrometric analysis. Density functional theory calculations were conducted in order to reveal the frontier molecular orbital interactions and reactivity. This work provides a new material platform for singlet oxygen related promising applications.


Asunto(s)
Compuestos Organometálicos/química , Compuestos de Platino/química , Oxígeno Singlete/química , Hidrocarburos Policíclicos Aromáticos/química , Análisis Espectral/métodos
16.
Inorg Chem ; 59(16): 11316-11328, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799462

RESUMEN

Molecular packing has an important effect on the photophysical properties of crystalline materials. We demonstrate in this work the modulation of molecular packing and emission properties of microcrystals by minor molecular structural variations. Four platinum ß-diketonate complexes, with two fluoro substituents (1) or one fluoro atom substituted on different positions of the auxiliary phenylpyridine ligand (2-4) have been synthesized. These complexes were used to prepare one-dimensional microcrystals with well-defined shapes and uniform sizes. Although 1-4 display similar emission spectra in the solution state, the corresponding microcrystals display different emission colors from green to yellow and orange. In addition, different temperature-responsive (80-298 K) emission spectral changes have been observed from these microcrystals, including the intensity variation of the locally excited (LE) emission without obvious wavelength shifts, competition between the LE and metal-metal-to-ligand charge-transfer emissions, and the sole wavelength shift of the π-π excimer emissions. These differences in emission properties are rationalized by different molecular packings of these materials, as revealed by single-crystal X-ray analyses.

17.
J Am Chem Soc ; 141(15): 6157-6161, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30945852

RESUMEN

Polymorphism and anisotropy are fundamental phenomena of crystalline materials. However, the structure-dependent photoluminescent (PL) anisotropy in polymorphic organic crystals has remained unexplored. Herein, two polymorphic nanocrystals, green-emitting nanorods (PtD-g) and yellow-emitting nanoplates (PtD-y), were obtained from a platinum(II)-ß-diketonate complex. The PtD-y crystals display remarkable PL anisotropy with an anisotropy ratio of up to 0.87 whereas the emission of the PtD-g crystals is nearly unpolarized. The polarization properties are rationalized on the different molecular packing of these crystals. By light-harvesting energy transfer, the PtD-y crystals are successfully used to amplify the emission polarization of a red-emitting platinum acceptor (PtA) doped into the donor crystalline matrix, which is otherwise weakly polarized as pure crystals.

18.
J Am Chem Soc ; 141(50): 19831-19838, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31744289

RESUMEN

The electrochromic property and device construction of a triphenylamine-based oriented two-dimensional covalent organic framework (2D COF) film on indium tin oxide (ITO) coated glass was reported. The characterization of the 2D COF3PA-TT film revealed that the film was uniform, with good crystallinity, and oriented with its 2D plane parallel to the substrate. For the first time, the electrochromic properties of 2D COF3PA-TT film were studied. 2D COF3PA-TT film on ITO exhibited reversible color transition between deep red and dark brown during redox process. Spectroelectrochemical experiments revealed color changes in the absorption spectra of 2D COF3PA-TT film in the visible and near-infrared regions and showed the characteristics of intervalence charge transfer. The quasi-solid-state electrochromic device was prepared based on the COF3PA-TT film, and it exhibited moderate performance and stability in the near-infrared region.

19.
Langmuir ; 35(20): 6571-6577, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31002519

RESUMEN

Adequate control over the structures of molecular building blocks plays an important role in the fabrication of desired supramolecular nanostructures at interfaces. In this study, the formation of a pure hydrogen-bonding co-assembly supramolecular nanonetwork on a highly oriented pyrolytic graphite surface was demonstrated by means of a scanning tunneling microscope. The thermal annealing process was conducted to monitor the temperature-triggered structural transformation of the self-assembled nanonetwork. On the basis of the single-molecule-level resolution scanning tunneling microscopy images, together with the density functional theory calculations, the formation mechanisms of the formed nanoarrays were proposed. The results have great significance with regard to controlled construction of complex nanostructures on the surface.

20.
J Org Chem ; 84(4): 2339-2345, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30656930

RESUMEN

Acetetracenylene-1,2-dione reacted with 3-ethylrhodanine in the presence of piperidine and Hantzsch ester via a Knoevenagel condensation-reduction sequence to give a tetracene-rhodanine adduct. This reduced Knoevenagel product exhibited magenta luminescence with a fluorescence quantum yield of φ = 0.34 and fluorescence lifetime of τ = 13.2 ns in toluene. Electrochemical studies and charge carrier transport measurements revealed ambipolar properties with hole and electron mobilities of 5.1 × 10-7 and 1.6 × 10-4 cm2/(V s), respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA